Loading…

Optimal Feedback Control for a Model of Motionof a Nonlinearly Viscous Fluid

We consider an optimal feedback control problem for an initial–boundary value problem describing the motion of a nonlinearly viscous fluid. We prove the existence of an optimal solution minimizing a given performance functional. To prove the existence of an optimal solution, we use a topological app...

Full description

Saved in:
Bibliographic Details
Published in:Differential equations 2021-01, Vol.57 (1), p.122-126
Main Authors: Zvyagin, V G, Zvyagin, A V, Nguyen, Minh Hong
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 126
container_issue 1
container_start_page 122
container_title Differential equations
container_volume 57
creator Zvyagin, V G
Zvyagin, A V
Nguyen, Minh Hong
description We consider an optimal feedback control problem for an initial–boundary value problem describing the motion of a nonlinearly viscous fluid. We prove the existence of an optimal solution minimizing a given performance functional. To prove the existence of an optimal solution, we use a topological approximation method for studying hydrodynamic problems.
doi_str_mv 10.1134/S0012266121010110
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2491963070</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2491963070</sourcerecordid><originalsourceid>FETCH-proquest_journals_24919630703</originalsourceid><addsrcrecordid>eNqNis2KwjAURsPggNWZB3B3wXX13qZT7VosLvxZKG5Lpk0hTiZXk3bh21vBB5BvcQ6cT4gJ4YxIpvMjIiVJllFC2I_wQ0SU4TKWuJQDET1z_OxDMQrhgoj5gn4isT1cW_OvLBRa17-q-oMVu9azhYY9KNhxrS1w00tr2PWiYM_OGqeVt3c4m1BxF6Cwnam_xGejbNDfL47FtFifVpv46vnW6dCWF-6861OZpDnlmcQFyvdeDzwuQwQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2491963070</pqid></control><display><type>article</type><title>Optimal Feedback Control for a Model of Motionof a Nonlinearly Viscous Fluid</title><source>Springer Nature</source><creator>Zvyagin, V G ; Zvyagin, A V ; Nguyen, Minh Hong</creator><creatorcontrib>Zvyagin, V G ; Zvyagin, A V ; Nguyen, Minh Hong</creatorcontrib><description>We consider an optimal feedback control problem for an initial–boundary value problem describing the motion of a nonlinearly viscous fluid. We prove the existence of an optimal solution minimizing a given performance functional. To prove the existence of an optimal solution, we use a topological approximation method for studying hydrodynamic problems.</description><identifier>ISSN: 0012-2661</identifier><identifier>EISSN: 1608-3083</identifier><identifier>DOI: 10.1134/S0012266121010110</identifier><language>eng</language><publisher>New York: Springer Nature B.V</publisher><subject>Approximation ; Boundary value problems ; Control systems ; Differential equations ; Feedback control ; Mathematics ; Viscous fluids</subject><ispartof>Differential equations, 2021-01, Vol.57 (1), p.122-126</ispartof><rights>Pleiades Publishing, Ltd. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Zvyagin, V G</creatorcontrib><creatorcontrib>Zvyagin, A V</creatorcontrib><creatorcontrib>Nguyen, Minh Hong</creatorcontrib><title>Optimal Feedback Control for a Model of Motionof a Nonlinearly Viscous Fluid</title><title>Differential equations</title><description>We consider an optimal feedback control problem for an initial–boundary value problem describing the motion of a nonlinearly viscous fluid. We prove the existence of an optimal solution minimizing a given performance functional. To prove the existence of an optimal solution, we use a topological approximation method for studying hydrodynamic problems.</description><subject>Approximation</subject><subject>Boundary value problems</subject><subject>Control systems</subject><subject>Differential equations</subject><subject>Feedback control</subject><subject>Mathematics</subject><subject>Viscous fluids</subject><issn>0012-2661</issn><issn>1608-3083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNis2KwjAURsPggNWZB3B3wXX13qZT7VosLvxZKG5Lpk0hTiZXk3bh21vBB5BvcQ6cT4gJ4YxIpvMjIiVJllFC2I_wQ0SU4TKWuJQDET1z_OxDMQrhgoj5gn4isT1cW_OvLBRa17-q-oMVu9azhYY9KNhxrS1w00tr2PWiYM_OGqeVt3c4m1BxF6Cwnam_xGejbNDfL47FtFifVpv46vnW6dCWF-6861OZpDnlmcQFyvdeDzwuQwQ</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Zvyagin, V G</creator><creator>Zvyagin, A V</creator><creator>Nguyen, Minh Hong</creator><general>Springer Nature B.V</general><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20210101</creationdate><title>Optimal Feedback Control for a Model of Motionof a Nonlinearly Viscous Fluid</title><author>Zvyagin, V G ; Zvyagin, A V ; Nguyen, Minh Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24919630703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Approximation</topic><topic>Boundary value problems</topic><topic>Control systems</topic><topic>Differential equations</topic><topic>Feedback control</topic><topic>Mathematics</topic><topic>Viscous fluids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zvyagin, V G</creatorcontrib><creatorcontrib>Zvyagin, A V</creatorcontrib><creatorcontrib>Nguyen, Minh Hong</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zvyagin, V G</au><au>Zvyagin, A V</au><au>Nguyen, Minh Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Feedback Control for a Model of Motionof a Nonlinearly Viscous Fluid</atitle><jtitle>Differential equations</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>57</volume><issue>1</issue><spage>122</spage><epage>126</epage><pages>122-126</pages><issn>0012-2661</issn><eissn>1608-3083</eissn><abstract>We consider an optimal feedback control problem for an initial–boundary value problem describing the motion of a nonlinearly viscous fluid. We prove the existence of an optimal solution minimizing a given performance functional. To prove the existence of an optimal solution, we use a topological approximation method for studying hydrodynamic problems.</abstract><cop>New York</cop><pub>Springer Nature B.V</pub><doi>10.1134/S0012266121010110</doi></addata></record>
fulltext fulltext
identifier ISSN: 0012-2661
ispartof Differential equations, 2021-01, Vol.57 (1), p.122-126
issn 0012-2661
1608-3083
language eng
recordid cdi_proquest_journals_2491963070
source Springer Nature
subjects Approximation
Boundary value problems
Control systems
Differential equations
Feedback control
Mathematics
Viscous fluids
title Optimal Feedback Control for a Model of Motionof a Nonlinearly Viscous Fluid
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T15%3A26%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Feedback%20Control%20for%20a%20Model%20of%20Motionof%20a%20Nonlinearly%20Viscous%20Fluid&rft.jtitle=Differential%20equations&rft.au=Zvyagin,%20V%20G&rft.date=2021-01-01&rft.volume=57&rft.issue=1&rft.spage=122&rft.epage=126&rft.pages=122-126&rft.issn=0012-2661&rft.eissn=1608-3083&rft_id=info:doi/10.1134/S0012266121010110&rft_dat=%3Cproquest%3E2491963070%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_24919630703%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2491963070&rft_id=info:pmid/&rfr_iscdi=true