Loading…
Construction of a Logical-Algebraic Corrector to Increase the Adaptive Properties of the ΣΠ-Neuron
In this paper, we consider the problem of constructing a correction algorithm with the aim of increasing the adaptive properties of the ΣΠ-neuron, relying solely on the structure of the ΣΠ-neuron itself. To build the corrector, the logical-algebraic method of data analysis is used. Comparison of the...
Saved in:
Published in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2021-03, Vol.253 (4), p.539-546 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2783-9861283d3be86e93c147e154687b255c71c0cc8ad975b502f239b134e0b9b9563 |
---|---|
cites | cdi_FETCH-LOGICAL-c2783-9861283d3be86e93c147e154687b255c71c0cc8ad975b502f239b134e0b9b9563 |
container_end_page | 546 |
container_issue | 4 |
container_start_page | 539 |
container_title | Journal of mathematical sciences (New York, N.Y.) |
container_volume | 253 |
creator | Lyutikova, L. A. |
description | In this paper, we consider the problem of constructing a correction algorithm with the aim of increasing the adaptive properties of the ΣΠ-neuron, relying solely on the structure of the ΣΠ-neuron itself. To build the corrector, the logical-algebraic method of data analysis is used. Comparison of the advantages of the neural network approach and the logical-algebraic method suggests that a combined approach to the organization of the neural network improves its efficiency and allows one to build a set of rules that reveal hidden patterns in a given subject area, thus improving the quality of the recognition system. |
doi_str_mv | 10.1007/s10958-021-05251-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2492300506</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2492300506</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2783-9861283d3be86e93c147e154687b255c71c0cc8ad975b502f239b134e0b9b9563</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOI6-gKuA62guTZMsh-JlYFAXug5pejp2GJsxaQXfRvB95plsreDO1Tlw_u8_8CF0zuglo1RdJUaN1IRyRqjkkhFxgGZMKkG0MvJw2KniRAiVHaOTlDZ0gHItZqgqQpu62PuuCS0ONXZ4FdaNd1uy2K6hjK7xuAgxgu9CxF3Ay9ZHcAlw9wJ4Ubld17wDfoxhB7FrII0l42n_tf8k99DH0J6io9ptE5z9zjl6vrl-Ku7I6uF2WSxWxHOlBTE6Z1yLSpSgczDCs0wBk1muVcml9Ip56r12lVGylJTXXJiSiQxoaUojczFHF1PvLoa3HlJnN6GP7fDS8sxwQamkY4pPKR9DShFqu4vNq4sfllE72rSTTTvYtD82rRggMUFpCLdriH_V_1Dfz3d3-Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2492300506</pqid></control><display><type>article</type><title>Construction of a Logical-Algebraic Corrector to Increase the Adaptive Properties of the ΣΠ-Neuron</title><source>Springer Link</source><creator>Lyutikova, L. A.</creator><creatorcontrib>Lyutikova, L. A.</creatorcontrib><description>In this paper, we consider the problem of constructing a correction algorithm with the aim of increasing the adaptive properties of the ΣΠ-neuron, relying solely on the structure of the ΣΠ-neuron itself. To build the corrector, the logical-algebraic method of data analysis is used. Comparison of the advantages of the neural network approach and the logical-algebraic method suggests that a combined approach to the organization of the neural network improves its efficiency and allows one to build a set of rules that reveal hidden patterns in a given subject area, thus improving the quality of the recognition system.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-021-05251-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Algorithms ; Construction ; Data analysis ; Mathematics ; Mathematics and Statistics ; Neural networks</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2021-03, Vol.253 (4), p.539-546</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2783-9861283d3be86e93c147e154687b255c71c0cc8ad975b502f239b134e0b9b9563</citedby><cites>FETCH-LOGICAL-c2783-9861283d3be86e93c147e154687b255c71c0cc8ad975b502f239b134e0b9b9563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Lyutikova, L. A.</creatorcontrib><title>Construction of a Logical-Algebraic Corrector to Increase the Adaptive Properties of the ΣΠ-Neuron</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>In this paper, we consider the problem of constructing a correction algorithm with the aim of increasing the adaptive properties of the ΣΠ-neuron, relying solely on the structure of the ΣΠ-neuron itself. To build the corrector, the logical-algebraic method of data analysis is used. Comparison of the advantages of the neural network approach and the logical-algebraic method suggests that a combined approach to the organization of the neural network improves its efficiency and allows one to build a set of rules that reveal hidden patterns in a given subject area, thus improving the quality of the recognition system.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Construction</subject><subject>Data analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Neural networks</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoOI6-gKuA62guTZMsh-JlYFAXug5pejp2GJsxaQXfRvB95plsreDO1Tlw_u8_8CF0zuglo1RdJUaN1IRyRqjkkhFxgGZMKkG0MvJw2KniRAiVHaOTlDZ0gHItZqgqQpu62PuuCS0ONXZ4FdaNd1uy2K6hjK7xuAgxgu9CxF3Ay9ZHcAlw9wJ4Ubld17wDfoxhB7FrII0l42n_tf8k99DH0J6io9ptE5z9zjl6vrl-Ku7I6uF2WSxWxHOlBTE6Z1yLSpSgczDCs0wBk1muVcml9Ip56r12lVGylJTXXJiSiQxoaUojczFHF1PvLoa3HlJnN6GP7fDS8sxwQamkY4pPKR9DShFqu4vNq4sfllE72rSTTTvYtD82rRggMUFpCLdriH_V_1Dfz3d3-Q</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Lyutikova, L. A.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210301</creationdate><title>Construction of a Logical-Algebraic Corrector to Increase the Adaptive Properties of the ΣΠ-Neuron</title><author>Lyutikova, L. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2783-9861283d3be86e93c147e154687b255c71c0cc8ad975b502f239b134e0b9b9563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Construction</topic><topic>Data analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Neural networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lyutikova, L. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lyutikova, L. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Construction of a Logical-Algebraic Corrector to Increase the Adaptive Properties of the ΣΠ-Neuron</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>253</volume><issue>4</issue><spage>539</spage><epage>546</epage><pages>539-546</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>In this paper, we consider the problem of constructing a correction algorithm with the aim of increasing the adaptive properties of the ΣΠ-neuron, relying solely on the structure of the ΣΠ-neuron itself. To build the corrector, the logical-algebraic method of data analysis is used. Comparison of the advantages of the neural network approach and the logical-algebraic method suggests that a combined approach to the organization of the neural network improves its efficiency and allows one to build a set of rules that reveal hidden patterns in a given subject area, thus improving the quality of the recognition system.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10958-021-05251-3</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1072-3374 |
ispartof | Journal of mathematical sciences (New York, N.Y.), 2021-03, Vol.253 (4), p.539-546 |
issn | 1072-3374 1573-8795 |
language | eng |
recordid | cdi_proquest_journals_2492300506 |
source | Springer Link |
subjects | Algebra Algorithms Construction Data analysis Mathematics Mathematics and Statistics Neural networks |
title | Construction of a Logical-Algebraic Corrector to Increase the Adaptive Properties of the ΣΠ-Neuron |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A31%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Construction%20of%20a%20Logical-Algebraic%20Corrector%20to%20Increase%20the%20Adaptive%20Properties%20of%20the%20%CE%A3%CE%A0-Neuron&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Lyutikova,%20L.%20A.&rft.date=2021-03-01&rft.volume=253&rft.issue=4&rft.spage=539&rft.epage=546&rft.pages=539-546&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-021-05251-3&rft_dat=%3Cproquest_cross%3E2492300506%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2783-9861283d3be86e93c147e154687b255c71c0cc8ad975b502f239b134e0b9b9563%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2492300506&rft_id=info:pmid/&rfr_iscdi=true |