Loading…
Osteogenic differentiation of mesenchymal stem cells on the bimodal polymer polyurethane/polyacrylonitrile containing cellulose phosphate nanowhisker
Polycaprolactone diol is the cornerstone, equipped with polyacrylonitrile and cellulose nanowhiskers (CNWs), of biocompatible and biodegradable polyurethanes (PUs). The solvent casting/particulate leaching technique was employed to contracting foam scaffolds with bimodal sizes from the combination o...
Saved in:
Published in: | Human cell : official journal of Human Cell Research Society 2021-03, Vol.34 (2), p.310-324 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Polycaprolactone diol is the cornerstone, equipped with polyacrylonitrile and cellulose nanowhiskers (CNWs), of biocompatible and biodegradable polyurethanes (PUs). The solvent casting/particulate leaching technique was employed to contracting foam scaffolds with bimodal sizes from the combination of polyurethane/polyacrylonitrile/cellulose nanowhisker nanocomposites. Sugar and sodium chloride are components used as porogens to develop the leaching method and fabricate the 3D scaffolds. Incorporation of different percentages of cellulose nanowhisker leads to the various efficient structures with biodegradability and biocompatibility properties. All nanocomposites scaffolds, as revealed by MTT assay using mesenchymal stem cell (MSC) lines, were non-cytotoxic. PU/PAN/CNW foam scaffolds were used for osteogenic differentiation of human mesenchymal stem cells (hMSCs). Based on the results, PU/PAN/CNW nanocomposites could not only support osteogenic differentiation but can also enhance the proliferation of hMSCs in three-dimensional synthetic extracellular matrix.
Graphic abstract |
---|---|
ISSN: | 1749-0774 0914-7470 1749-0774 |
DOI: | 10.1007/s13577-020-00449-0 |