Loading…
A New Look at the Variance of Summertime Temperatures over Land
The increasing frequency of very high summertime temperatures has motivated growing interest in the processes determining the probability distribution of surface temperature over land. Here, we show that on monthly time scales, temperature anomalies can be modeled as linear responses to fluctuations...
Saved in:
Published in: | Journal of climate 2020-07, Vol.33 (13), p.5465-5477 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The increasing frequency of very high summertime temperatures has motivated growing interest in the processes determining the probability distribution of surface temperature over land. Here, we show that on monthly time scales, temperature anomalies can be modeled as linear responses to fluctuations in shortwave radiation and precipitation. Our model contains only three adjustable parameters, and, surprisingly, these can be taken as constant across the globe, notwithstanding large spatial variability in topography, vegetation, and hydrological processes. Using observations of shortwave radiation and precipitation from 2000 to 2017, the model accurately reproduces the observed pattern of temperature variance throughout the Northern Hemisphere midlatitudes. In addition, the variance in latent heat flux estimated by the model agrees well with the few long-term records that are available in the central United States. As an application of the model, we investigate the changes in the variance of monthly averaged surface temperature that might be expected due to anthropogenic climate change. We find that a climatic warming of 4°C causes a 10% increase in temperature variance in parts of North America. |
---|---|
ISSN: | 0894-8755 1520-0442 |
DOI: | 10.1175/JCLI-D-19-0887.1 |