Loading…
On the convergence of complex Jacobi methods
In this paper we prove the global convergence of the complex Jacobi method for Hermitian matrices for a large class of generalized serial pivot strategies. For a given Hermitian matrix A of order n we find a constant depending on n, such that , where is obtained from A by applying one or more cycles...
Saved in:
Published in: | Linear & multilinear algebra 2021-02, Vol.69 (3), p.489-514 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c338t-b0c57d9edde67a6ee6928cf560055e902a213643c9d4ca2ba5339adb06811e303 |
---|---|
cites | cdi_FETCH-LOGICAL-c338t-b0c57d9edde67a6ee6928cf560055e902a213643c9d4ca2ba5339adb06811e303 |
container_end_page | 514 |
container_issue | 3 |
container_start_page | 489 |
container_title | Linear & multilinear algebra |
container_volume | 69 |
creator | Hari, Vjeran Kovač, Erna Begović |
description | In this paper we prove the global convergence of the complex Jacobi method for Hermitian matrices for a large class of generalized serial pivot strategies. For a given Hermitian matrix A of order n we find a constant
depending on n, such that
, where
is obtained from A by applying one or more cycles of the Jacobi method and
stands for the off-diagonal norm. Using the theory of complex Jacobi operators, the result is generalized so it can be used for proving convergence of more general Jacobi-type processes. In particular, we use it to prove the global convergence of Cholesky-Jacobi method for solving the positive definite generalized eigenvalue problem. |
doi_str_mv | 10.1080/03081087.2019.1604622 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2492788708</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2492788708</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-b0c57d9edde67a6ee6928cf560055e902a213643c9d4ca2ba5339adb06811e303</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMoOKc_QSh4a-dJ0qTJnTKcHwx2o9chTU9dR9vMpFP3723ZvPXqnAPP-x54CLmmMKOg4A44qGHJZwyonlEJmWTshEyokDwVlOtTMhmZdITOyUWMGwDIKBcTcrvqkn6NifPdF4YP7BwmvhrOdtvgT_JqnS_qpMV-7ct4Sc4q20S8Os4peV88vs2f0-Xq6WX-sEwd56pPC3AiLzWWJcrcSkSpmXKVkABCoAZmGeUy406XmbOssIJzbcsCpKIUOfApuTn0boP_3GHszcbvQje8NCzTLFcqBzVQ4kC54GMMWJltqFsb9oaCGcWYPzFmFGOOYobc_SFXd5UPrf32oSlNb_eND1Wwnauj4f9X_AKBzGfb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2492788708</pqid></control><display><type>article</type><title>On the convergence of complex Jacobi methods</title><source>Taylor and Francis Science and Technology Collection</source><creator>Hari, Vjeran ; Kovač, Erna Begović</creator><creatorcontrib>Hari, Vjeran ; Kovač, Erna Begović</creatorcontrib><description>In this paper we prove the global convergence of the complex Jacobi method for Hermitian matrices for a large class of generalized serial pivot strategies. For a given Hermitian matrix A of order n we find a constant
depending on n, such that
, where
is obtained from A by applying one or more cycles of the Jacobi method and
stands for the off-diagonal norm. Using the theory of complex Jacobi operators, the result is generalized so it can be used for proving convergence of more general Jacobi-type processes. In particular, we use it to prove the global convergence of Cholesky-Jacobi method for solving the positive definite generalized eigenvalue problem.</description><identifier>ISSN: 0308-1087</identifier><identifier>EISSN: 1563-5139</identifier><identifier>DOI: 10.1080/03081087.2019.1604622</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis</publisher><subject>Cholesky-Jacobi method ; Complex Jacobi method ; complex Jacobi operators ; Convergence ; Eigenvalues ; generalized eigenvalue problem ; global convergence ; Operators (mathematics)</subject><ispartof>Linear & multilinear algebra, 2021-02, Vol.69 (3), p.489-514</ispartof><rights>2019 Informa UK Limited, trading as Taylor & Francis Group 2019</rights><rights>2019 Informa UK Limited, trading as Taylor & Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-b0c57d9edde67a6ee6928cf560055e902a213643c9d4ca2ba5339adb06811e303</citedby><cites>FETCH-LOGICAL-c338t-b0c57d9edde67a6ee6928cf560055e902a213643c9d4ca2ba5339adb06811e303</cites><orcidid>0000-0002-3213-1465</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hari, Vjeran</creatorcontrib><creatorcontrib>Kovač, Erna Begović</creatorcontrib><title>On the convergence of complex Jacobi methods</title><title>Linear & multilinear algebra</title><description>In this paper we prove the global convergence of the complex Jacobi method for Hermitian matrices for a large class of generalized serial pivot strategies. For a given Hermitian matrix A of order n we find a constant
depending on n, such that
, where
is obtained from A by applying one or more cycles of the Jacobi method and
stands for the off-diagonal norm. Using the theory of complex Jacobi operators, the result is generalized so it can be used for proving convergence of more general Jacobi-type processes. In particular, we use it to prove the global convergence of Cholesky-Jacobi method for solving the positive definite generalized eigenvalue problem.</description><subject>Cholesky-Jacobi method</subject><subject>Complex Jacobi method</subject><subject>complex Jacobi operators</subject><subject>Convergence</subject><subject>Eigenvalues</subject><subject>generalized eigenvalue problem</subject><subject>global convergence</subject><subject>Operators (mathematics)</subject><issn>0308-1087</issn><issn>1563-5139</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kF1LwzAUhoMoOKc_QSh4a-dJ0qTJnTKcHwx2o9chTU9dR9vMpFP3723ZvPXqnAPP-x54CLmmMKOg4A44qGHJZwyonlEJmWTshEyokDwVlOtTMhmZdITOyUWMGwDIKBcTcrvqkn6NifPdF4YP7BwmvhrOdtvgT_JqnS_qpMV-7ct4Sc4q20S8Os4peV88vs2f0-Xq6WX-sEwd56pPC3AiLzWWJcrcSkSpmXKVkABCoAZmGeUy406XmbOssIJzbcsCpKIUOfApuTn0boP_3GHszcbvQje8NCzTLFcqBzVQ4kC54GMMWJltqFsb9oaCGcWYPzFmFGOOYobc_SFXd5UPrf32oSlNb_eND1Wwnauj4f9X_AKBzGfb</recordid><startdate>20210217</startdate><enddate>20210217</enddate><creator>Hari, Vjeran</creator><creator>Kovač, Erna Begović</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3213-1465</orcidid></search><sort><creationdate>20210217</creationdate><title>On the convergence of complex Jacobi methods</title><author>Hari, Vjeran ; Kovač, Erna Begović</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-b0c57d9edde67a6ee6928cf560055e902a213643c9d4ca2ba5339adb06811e303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cholesky-Jacobi method</topic><topic>Complex Jacobi method</topic><topic>complex Jacobi operators</topic><topic>Convergence</topic><topic>Eigenvalues</topic><topic>generalized eigenvalue problem</topic><topic>global convergence</topic><topic>Operators (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hari, Vjeran</creatorcontrib><creatorcontrib>Kovač, Erna Begović</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Linear & multilinear algebra</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hari, Vjeran</au><au>Kovač, Erna Begović</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the convergence of complex Jacobi methods</atitle><jtitle>Linear & multilinear algebra</jtitle><date>2021-02-17</date><risdate>2021</risdate><volume>69</volume><issue>3</issue><spage>489</spage><epage>514</epage><pages>489-514</pages><issn>0308-1087</issn><eissn>1563-5139</eissn><abstract>In this paper we prove the global convergence of the complex Jacobi method for Hermitian matrices for a large class of generalized serial pivot strategies. For a given Hermitian matrix A of order n we find a constant
depending on n, such that
, where
is obtained from A by applying one or more cycles of the Jacobi method and
stands for the off-diagonal norm. Using the theory of complex Jacobi operators, the result is generalized so it can be used for proving convergence of more general Jacobi-type processes. In particular, we use it to prove the global convergence of Cholesky-Jacobi method for solving the positive definite generalized eigenvalue problem.</abstract><cop>Abingdon</cop><pub>Taylor & Francis</pub><doi>10.1080/03081087.2019.1604622</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0002-3213-1465</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0308-1087 |
ispartof | Linear & multilinear algebra, 2021-02, Vol.69 (3), p.489-514 |
issn | 0308-1087 1563-5139 |
language | eng |
recordid | cdi_proquest_journals_2492788708 |
source | Taylor and Francis Science and Technology Collection |
subjects | Cholesky-Jacobi method Complex Jacobi method complex Jacobi operators Convergence Eigenvalues generalized eigenvalue problem global convergence Operators (mathematics) |
title | On the convergence of complex Jacobi methods |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A12%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20convergence%20of%20complex%20Jacobi%20methods&rft.jtitle=Linear%20&%20multilinear%20algebra&rft.au=Hari,%20Vjeran&rft.date=2021-02-17&rft.volume=69&rft.issue=3&rft.spage=489&rft.epage=514&rft.pages=489-514&rft.issn=0308-1087&rft.eissn=1563-5139&rft_id=info:doi/10.1080/03081087.2019.1604622&rft_dat=%3Cproquest_cross%3E2492788708%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-b0c57d9edde67a6ee6928cf560055e902a213643c9d4ca2ba5339adb06811e303%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2492788708&rft_id=info:pmid/&rfr_iscdi=true |