Loading…
HardCoRe-NAS: Hard Constrained diffeRentiable Neural Architecture Search
Realistic use of neural networks often requires adhering to multiple constraints on latency, energy and memory among others. A popular approach to find fitting networks is through constrained Neural Architecture Search (NAS), however, previous methods enforce the constraint only softly. Therefore, t...
Saved in:
Published in: | arXiv.org 2021-02 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Nayman, Niv Aflalo, Yonathan Noy, Asaf Zelnik-Manor, Lihi |
description | Realistic use of neural networks often requires adhering to multiple constraints on latency, energy and memory among others. A popular approach to find fitting networks is through constrained Neural Architecture Search (NAS), however, previous methods enforce the constraint only softly. Therefore, the resulting networks do not exactly adhere to the resource constraint and their accuracy is harmed. In this work we resolve this by introducing Hard Constrained diffeRentiable NAS (HardCoRe-NAS), that is based on an accurate formulation of the expected resource requirement and a scalable search method that satisfies the hard constraint throughout the search. Our experiments show that HardCoRe-NAS generates state-of-the-art architectures, surpassing other NAS methods, while strictly satisfying the hard resource constraints without any tuning required. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2492818383</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2492818383</sourcerecordid><originalsourceid>FETCH-proquest_journals_24928183833</originalsourceid><addsrcrecordid>eNqNitEKgjAUQEcQJOU_DHoW9E5r9SZS-OSD9S5LrzSRre62_8-gD-jpcDhnxSIQIktkDrBhsXNTmqZwOEJRiIjVtaKhsi0mTXk786_xyhrnSWmDAx_0OGKLxmv1mJE3GEjNvKT-qT32PhDyG6pFd2w9qtlh_OOW7a-Xe1UnL7LvgM53kw1kltRBfgKZSSGF-O_6AMXfO0s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2492818383</pqid></control><display><type>article</type><title>HardCoRe-NAS: Hard Constrained diffeRentiable Neural Architecture Search</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Nayman, Niv ; Aflalo, Yonathan ; Noy, Asaf ; Zelnik-Manor, Lihi</creator><creatorcontrib>Nayman, Niv ; Aflalo, Yonathan ; Noy, Asaf ; Zelnik-Manor, Lihi</creatorcontrib><description>Realistic use of neural networks often requires adhering to multiple constraints on latency, energy and memory among others. A popular approach to find fitting networks is through constrained Neural Architecture Search (NAS), however, previous methods enforce the constraint only softly. Therefore, the resulting networks do not exactly adhere to the resource constraint and their accuracy is harmed. In this work we resolve this by introducing Hard Constrained diffeRentiable NAS (HardCoRe-NAS), that is based on an accurate formulation of the expected resource requirement and a scalable search method that satisfies the hard constraint throughout the search. Our experiments show that HardCoRe-NAS generates state-of-the-art architectures, surpassing other NAS methods, while strictly satisfying the hard resource constraints without any tuning required.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Computer architecture ; Constraints ; Network latency ; Neural networks ; Search methods</subject><ispartof>arXiv.org, 2021-02</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2492818383?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Nayman, Niv</creatorcontrib><creatorcontrib>Aflalo, Yonathan</creatorcontrib><creatorcontrib>Noy, Asaf</creatorcontrib><creatorcontrib>Zelnik-Manor, Lihi</creatorcontrib><title>HardCoRe-NAS: Hard Constrained diffeRentiable Neural Architecture Search</title><title>arXiv.org</title><description>Realistic use of neural networks often requires adhering to multiple constraints on latency, energy and memory among others. A popular approach to find fitting networks is through constrained Neural Architecture Search (NAS), however, previous methods enforce the constraint only softly. Therefore, the resulting networks do not exactly adhere to the resource constraint and their accuracy is harmed. In this work we resolve this by introducing Hard Constrained diffeRentiable NAS (HardCoRe-NAS), that is based on an accurate formulation of the expected resource requirement and a scalable search method that satisfies the hard constraint throughout the search. Our experiments show that HardCoRe-NAS generates state-of-the-art architectures, surpassing other NAS methods, while strictly satisfying the hard resource constraints without any tuning required.</description><subject>Computer architecture</subject><subject>Constraints</subject><subject>Network latency</subject><subject>Neural networks</subject><subject>Search methods</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNitEKgjAUQEcQJOU_DHoW9E5r9SZS-OSD9S5LrzSRre62_8-gD-jpcDhnxSIQIktkDrBhsXNTmqZwOEJRiIjVtaKhsi0mTXk786_xyhrnSWmDAx_0OGKLxmv1mJE3GEjNvKT-qT32PhDyG6pFd2w9qtlh_OOW7a-Xe1UnL7LvgM53kw1kltRBfgKZSSGF-O_6AMXfO0s</recordid><startdate>20210223</startdate><enddate>20210223</enddate><creator>Nayman, Niv</creator><creator>Aflalo, Yonathan</creator><creator>Noy, Asaf</creator><creator>Zelnik-Manor, Lihi</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210223</creationdate><title>HardCoRe-NAS: Hard Constrained diffeRentiable Neural Architecture Search</title><author>Nayman, Niv ; Aflalo, Yonathan ; Noy, Asaf ; Zelnik-Manor, Lihi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24928183833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computer architecture</topic><topic>Constraints</topic><topic>Network latency</topic><topic>Neural networks</topic><topic>Search methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Nayman, Niv</creatorcontrib><creatorcontrib>Aflalo, Yonathan</creatorcontrib><creatorcontrib>Noy, Asaf</creatorcontrib><creatorcontrib>Zelnik-Manor, Lihi</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nayman, Niv</au><au>Aflalo, Yonathan</au><au>Noy, Asaf</au><au>Zelnik-Manor, Lihi</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>HardCoRe-NAS: Hard Constrained diffeRentiable Neural Architecture Search</atitle><jtitle>arXiv.org</jtitle><date>2021-02-23</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>Realistic use of neural networks often requires adhering to multiple constraints on latency, energy and memory among others. A popular approach to find fitting networks is through constrained Neural Architecture Search (NAS), however, previous methods enforce the constraint only softly. Therefore, the resulting networks do not exactly adhere to the resource constraint and their accuracy is harmed. In this work we resolve this by introducing Hard Constrained diffeRentiable NAS (HardCoRe-NAS), that is based on an accurate formulation of the expected resource requirement and a scalable search method that satisfies the hard constraint throughout the search. Our experiments show that HardCoRe-NAS generates state-of-the-art architectures, surpassing other NAS methods, while strictly satisfying the hard resource constraints without any tuning required.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-02 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2492818383 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Computer architecture Constraints Network latency Neural networks Search methods |
title | HardCoRe-NAS: Hard Constrained diffeRentiable Neural Architecture Search |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T22%3A55%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=HardCoRe-NAS:%20Hard%20Constrained%20diffeRentiable%20Neural%20Architecture%20Search&rft.jtitle=arXiv.org&rft.au=Nayman,%20Niv&rft.date=2021-02-23&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2492818383%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_24928183833%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2492818383&rft_id=info:pmid/&rfr_iscdi=true |