Loading…

Observability Analysis and Consistency Improvements for Visual-Inertial Odometry on the Matrix Lie Group of Extended Poses

In this paper, we present a novel extended Kalman filter (EKF)-based visual-inertial odometry for robotic platforms by modeling the state space as the recently proposed matrix Lie group of extended poses. Specifically, we found that the proposed estimator suffers from an inconsistency similar to tha...

Full description

Saved in:
Bibliographic Details
Published in:IEEE sensors journal 2021-03, Vol.21 (6), p.8341-8353
Main Authors: Tsao, Shu-Hua, Jan, Shau-Shiun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c293t-61daa8f24fc8dfb30a84a57fcd884a267e8b7127033c8d0630c567ced2004da93
cites cdi_FETCH-LOGICAL-c293t-61daa8f24fc8dfb30a84a57fcd884a267e8b7127033c8d0630c567ced2004da93
container_end_page 8353
container_issue 6
container_start_page 8341
container_title IEEE sensors journal
container_volume 21
creator Tsao, Shu-Hua
Jan, Shau-Shiun
description In this paper, we present a novel extended Kalman filter (EKF)-based visual-inertial odometry for robotic platforms by modeling the state space as the recently proposed matrix Lie group of extended poses. Specifically, we found that the proposed estimator suffers from an inconsistency similar to that of the conventional SO\left ({3}\right)\times \mathbb {R}^{6} uncertainty representation from the standpoint of an observability analysis. The inconsistency mainly is a result of spurious information along the unobservable directions. An inconsistent estimator would lead to overconfidently reducing the state uncertainty and larger estimation errors that would in turn cause system divergence. We applied the first-estimate Jacobian (FEJ) framework and observability constrained (OC) techniques to avoid spurious information and improve consistency. The performance of the proposed estimator is validated using both simulated and real-world datasets.
doi_str_mv 10.1109/JSEN.2020.3046718
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2492856624</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9305686</ieee_id><sourcerecordid>2492856624</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-61daa8f24fc8dfb30a84a57fcd884a267e8b7127033c8d0630c567ced2004da93</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhosoOKc_QLwJeN2ZjzZJL8eYczKd4AfelbQ5xYyumUk6Vn-9LROvznvxvC-cJ4quCZ4QgrO7x9f584RiiicMJ1wQeRKNSJrKmIhEng6Z4Thh4vM8uvB-gzHJRCpG0c-68OD2qjC1CR2aNqruvPFINRrNbNPHAE3ZoeV25-wettAEjyrr0IfxrarjZQMuGFWjtbZbCK5DtkHhC9CTCs4c0MoAWjjb7pCt0PzQj2nQ6MV68JfRWaVqD1d_dxy938_fZg_xar1YzqaruKQZCzEnWilZ0aQqpa4KhpVMVCqqUss-UC5AFoJQgRnrAcwZLlMuStAU40SrjI2j2-Nu_8F3Cz7kG9u6_lGf0ySjMuWcJj1FjlTprPcOqnznzFa5Lic4HxTng-J8UJz_Ke47N8eOAYB_PmM45ZKzX-bNeaI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2492856624</pqid></control><display><type>article</type><title>Observability Analysis and Consistency Improvements for Visual-Inertial Odometry on the Matrix Lie Group of Extended Poses</title><source>IEEE Xplore (Online service)</source><creator>Tsao, Shu-Hua ; Jan, Shau-Shiun</creator><creatorcontrib>Tsao, Shu-Hua ; Jan, Shau-Shiun</creatorcontrib><description>In this paper, we present a novel extended Kalman filter (EKF)-based visual-inertial odometry for robotic platforms by modeling the state space as the recently proposed matrix Lie group of extended poses. Specifically, we found that the proposed estimator suffers from an inconsistency similar to that of the conventional &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;SO\left ({3}\right)\times \mathbb {R}^{6} &lt;/tex-math&gt;&lt;/inline-formula&gt; uncertainty representation from the standpoint of an observability analysis. The inconsistency mainly is a result of spurious information along the unobservable directions. An inconsistent estimator would lead to overconfidently reducing the state uncertainty and larger estimation errors that would in turn cause system divergence. We applied the first-estimate Jacobian (FEJ) framework and observability constrained (OC) techniques to avoid spurious information and improve consistency. The performance of the proposed estimator is validated using both simulated and real-world datasets.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2020.3046718</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Consistency ; Consistency improvements ; Extended Kalman filter ; Jacobian matrices ; Lie groups ; Mathematical model ; matrix Lie group ; Measurement uncertainty ; Observability ; observability analysis ; Robots ; Uncertainty ; vision-aided inertial navigation ; Visual observation ; Visualization</subject><ispartof>IEEE sensors journal, 2021-03, Vol.21 (6), p.8341-8353</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-61daa8f24fc8dfb30a84a57fcd884a267e8b7127033c8d0630c567ced2004da93</citedby><cites>FETCH-LOGICAL-c293t-61daa8f24fc8dfb30a84a57fcd884a267e8b7127033c8d0630c567ced2004da93</cites><orcidid>0000-0002-0863-947X ; 0000-0001-9374-0478</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9305686$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54775</link.rule.ids></links><search><creatorcontrib>Tsao, Shu-Hua</creatorcontrib><creatorcontrib>Jan, Shau-Shiun</creatorcontrib><title>Observability Analysis and Consistency Improvements for Visual-Inertial Odometry on the Matrix Lie Group of Extended Poses</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>In this paper, we present a novel extended Kalman filter (EKF)-based visual-inertial odometry for robotic platforms by modeling the state space as the recently proposed matrix Lie group of extended poses. Specifically, we found that the proposed estimator suffers from an inconsistency similar to that of the conventional &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;SO\left ({3}\right)\times \mathbb {R}^{6} &lt;/tex-math&gt;&lt;/inline-formula&gt; uncertainty representation from the standpoint of an observability analysis. The inconsistency mainly is a result of spurious information along the unobservable directions. An inconsistent estimator would lead to overconfidently reducing the state uncertainty and larger estimation errors that would in turn cause system divergence. We applied the first-estimate Jacobian (FEJ) framework and observability constrained (OC) techniques to avoid spurious information and improve consistency. The performance of the proposed estimator is validated using both simulated and real-world datasets.</description><subject>Consistency</subject><subject>Consistency improvements</subject><subject>Extended Kalman filter</subject><subject>Jacobian matrices</subject><subject>Lie groups</subject><subject>Mathematical model</subject><subject>matrix Lie group</subject><subject>Measurement uncertainty</subject><subject>Observability</subject><subject>observability analysis</subject><subject>Robots</subject><subject>Uncertainty</subject><subject>vision-aided inertial navigation</subject><subject>Visual observation</subject><subject>Visualization</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kF1LwzAUhosoOKc_QLwJeN2ZjzZJL8eYczKd4AfelbQ5xYyumUk6Vn-9LROvznvxvC-cJ4quCZ4QgrO7x9f584RiiicMJ1wQeRKNSJrKmIhEng6Z4Thh4vM8uvB-gzHJRCpG0c-68OD2qjC1CR2aNqruvPFINRrNbNPHAE3ZoeV25-wettAEjyrr0IfxrarjZQMuGFWjtbZbCK5DtkHhC9CTCs4c0MoAWjjb7pCt0PzQj2nQ6MV68JfRWaVqD1d_dxy938_fZg_xar1YzqaruKQZCzEnWilZ0aQqpa4KhpVMVCqqUss-UC5AFoJQgRnrAcwZLlMuStAU40SrjI2j2-Nu_8F3Cz7kG9u6_lGf0ySjMuWcJj1FjlTprPcOqnznzFa5Lic4HxTng-J8UJz_Ke47N8eOAYB_PmM45ZKzX-bNeaI</recordid><startdate>20210315</startdate><enddate>20210315</enddate><creator>Tsao, Shu-Hua</creator><creator>Jan, Shau-Shiun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0863-947X</orcidid><orcidid>https://orcid.org/0000-0001-9374-0478</orcidid></search><sort><creationdate>20210315</creationdate><title>Observability Analysis and Consistency Improvements for Visual-Inertial Odometry on the Matrix Lie Group of Extended Poses</title><author>Tsao, Shu-Hua ; Jan, Shau-Shiun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-61daa8f24fc8dfb30a84a57fcd884a267e8b7127033c8d0630c567ced2004da93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Consistency</topic><topic>Consistency improvements</topic><topic>Extended Kalman filter</topic><topic>Jacobian matrices</topic><topic>Lie groups</topic><topic>Mathematical model</topic><topic>matrix Lie group</topic><topic>Measurement uncertainty</topic><topic>Observability</topic><topic>observability analysis</topic><topic>Robots</topic><topic>Uncertainty</topic><topic>vision-aided inertial navigation</topic><topic>Visual observation</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsao, Shu-Hua</creatorcontrib><creatorcontrib>Jan, Shau-Shiun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsao, Shu-Hua</au><au>Jan, Shau-Shiun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Observability Analysis and Consistency Improvements for Visual-Inertial Odometry on the Matrix Lie Group of Extended Poses</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2021-03-15</date><risdate>2021</risdate><volume>21</volume><issue>6</issue><spage>8341</spage><epage>8353</epage><pages>8341-8353</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>In this paper, we present a novel extended Kalman filter (EKF)-based visual-inertial odometry for robotic platforms by modeling the state space as the recently proposed matrix Lie group of extended poses. Specifically, we found that the proposed estimator suffers from an inconsistency similar to that of the conventional &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;SO\left ({3}\right)\times \mathbb {R}^{6} &lt;/tex-math&gt;&lt;/inline-formula&gt; uncertainty representation from the standpoint of an observability analysis. The inconsistency mainly is a result of spurious information along the unobservable directions. An inconsistent estimator would lead to overconfidently reducing the state uncertainty and larger estimation errors that would in turn cause system divergence. We applied the first-estimate Jacobian (FEJ) framework and observability constrained (OC) techniques to avoid spurious information and improve consistency. The performance of the proposed estimator is validated using both simulated and real-world datasets.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2020.3046718</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0863-947X</orcidid><orcidid>https://orcid.org/0000-0001-9374-0478</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2021-03, Vol.21 (6), p.8341-8353
issn 1530-437X
1558-1748
language eng
recordid cdi_proquest_journals_2492856624
source IEEE Xplore (Online service)
subjects Consistency
Consistency improvements
Extended Kalman filter
Jacobian matrices
Lie groups
Mathematical model
matrix Lie group
Measurement uncertainty
Observability
observability analysis
Robots
Uncertainty
vision-aided inertial navigation
Visual observation
Visualization
title Observability Analysis and Consistency Improvements for Visual-Inertial Odometry on the Matrix Lie Group of Extended Poses
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T16%3A32%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Observability%20Analysis%20and%20Consistency%20Improvements%20for%20Visual-Inertial%20Odometry%20on%20the%20Matrix%20Lie%20Group%20of%20Extended%20Poses&rft.jtitle=IEEE%20sensors%20journal&rft.au=Tsao,%20Shu-Hua&rft.date=2021-03-15&rft.volume=21&rft.issue=6&rft.spage=8341&rft.epage=8353&rft.pages=8341-8353&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2020.3046718&rft_dat=%3Cproquest_ieee_%3E2492856624%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-61daa8f24fc8dfb30a84a57fcd884a267e8b7127033c8d0630c567ced2004da93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2492856624&rft_id=info:pmid/&rft_ieee_id=9305686&rfr_iscdi=true