Loading…
Observability Analysis and Consistency Improvements for Visual-Inertial Odometry on the Matrix Lie Group of Extended Poses
In this paper, we present a novel extended Kalman filter (EKF)-based visual-inertial odometry for robotic platforms by modeling the state space as the recently proposed matrix Lie group of extended poses. Specifically, we found that the proposed estimator suffers from an inconsistency similar to tha...
Saved in:
Published in: | IEEE sensors journal 2021-03, Vol.21 (6), p.8341-8353 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c293t-61daa8f24fc8dfb30a84a57fcd884a267e8b7127033c8d0630c567ced2004da93 |
---|---|
cites | cdi_FETCH-LOGICAL-c293t-61daa8f24fc8dfb30a84a57fcd884a267e8b7127033c8d0630c567ced2004da93 |
container_end_page | 8353 |
container_issue | 6 |
container_start_page | 8341 |
container_title | IEEE sensors journal |
container_volume | 21 |
creator | Tsao, Shu-Hua Jan, Shau-Shiun |
description | In this paper, we present a novel extended Kalman filter (EKF)-based visual-inertial odometry for robotic platforms by modeling the state space as the recently proposed matrix Lie group of extended poses. Specifically, we found that the proposed estimator suffers from an inconsistency similar to that of the conventional SO\left ({3}\right)\times \mathbb {R}^{6} uncertainty representation from the standpoint of an observability analysis. The inconsistency mainly is a result of spurious information along the unobservable directions. An inconsistent estimator would lead to overconfidently reducing the state uncertainty and larger estimation errors that would in turn cause system divergence. We applied the first-estimate Jacobian (FEJ) framework and observability constrained (OC) techniques to avoid spurious information and improve consistency. The performance of the proposed estimator is validated using both simulated and real-world datasets. |
doi_str_mv | 10.1109/JSEN.2020.3046718 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2492856624</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9305686</ieee_id><sourcerecordid>2492856624</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-61daa8f24fc8dfb30a84a57fcd884a267e8b7127033c8d0630c567ced2004da93</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhosoOKc_QLwJeN2ZjzZJL8eYczKd4AfelbQ5xYyumUk6Vn-9LROvznvxvC-cJ4quCZ4QgrO7x9f584RiiicMJ1wQeRKNSJrKmIhEng6Z4Thh4vM8uvB-gzHJRCpG0c-68OD2qjC1CR2aNqruvPFINRrNbNPHAE3ZoeV25-wettAEjyrr0IfxrarjZQMuGFWjtbZbCK5DtkHhC9CTCs4c0MoAWjjb7pCt0PzQj2nQ6MV68JfRWaVqD1d_dxy938_fZg_xar1YzqaruKQZCzEnWilZ0aQqpa4KhpVMVCqqUss-UC5AFoJQgRnrAcwZLlMuStAU40SrjI2j2-Nu_8F3Cz7kG9u6_lGf0ySjMuWcJj1FjlTprPcOqnznzFa5Lic4HxTng-J8UJz_Ke47N8eOAYB_PmM45ZKzX-bNeaI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2492856624</pqid></control><display><type>article</type><title>Observability Analysis and Consistency Improvements for Visual-Inertial Odometry on the Matrix Lie Group of Extended Poses</title><source>IEEE Xplore (Online service)</source><creator>Tsao, Shu-Hua ; Jan, Shau-Shiun</creator><creatorcontrib>Tsao, Shu-Hua ; Jan, Shau-Shiun</creatorcontrib><description>In this paper, we present a novel extended Kalman filter (EKF)-based visual-inertial odometry for robotic platforms by modeling the state space as the recently proposed matrix Lie group of extended poses. Specifically, we found that the proposed estimator suffers from an inconsistency similar to that of the conventional <inline-formula> <tex-math notation="LaTeX">SO\left ({3}\right)\times \mathbb {R}^{6} </tex-math></inline-formula> uncertainty representation from the standpoint of an observability analysis. The inconsistency mainly is a result of spurious information along the unobservable directions. An inconsistent estimator would lead to overconfidently reducing the state uncertainty and larger estimation errors that would in turn cause system divergence. We applied the first-estimate Jacobian (FEJ) framework and observability constrained (OC) techniques to avoid spurious information and improve consistency. The performance of the proposed estimator is validated using both simulated and real-world datasets.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2020.3046718</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Consistency ; Consistency improvements ; Extended Kalman filter ; Jacobian matrices ; Lie groups ; Mathematical model ; matrix Lie group ; Measurement uncertainty ; Observability ; observability analysis ; Robots ; Uncertainty ; vision-aided inertial navigation ; Visual observation ; Visualization</subject><ispartof>IEEE sensors journal, 2021-03, Vol.21 (6), p.8341-8353</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-61daa8f24fc8dfb30a84a57fcd884a267e8b7127033c8d0630c567ced2004da93</citedby><cites>FETCH-LOGICAL-c293t-61daa8f24fc8dfb30a84a57fcd884a267e8b7127033c8d0630c567ced2004da93</cites><orcidid>0000-0002-0863-947X ; 0000-0001-9374-0478</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9305686$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54775</link.rule.ids></links><search><creatorcontrib>Tsao, Shu-Hua</creatorcontrib><creatorcontrib>Jan, Shau-Shiun</creatorcontrib><title>Observability Analysis and Consistency Improvements for Visual-Inertial Odometry on the Matrix Lie Group of Extended Poses</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>In this paper, we present a novel extended Kalman filter (EKF)-based visual-inertial odometry for robotic platforms by modeling the state space as the recently proposed matrix Lie group of extended poses. Specifically, we found that the proposed estimator suffers from an inconsistency similar to that of the conventional <inline-formula> <tex-math notation="LaTeX">SO\left ({3}\right)\times \mathbb {R}^{6} </tex-math></inline-formula> uncertainty representation from the standpoint of an observability analysis. The inconsistency mainly is a result of spurious information along the unobservable directions. An inconsistent estimator would lead to overconfidently reducing the state uncertainty and larger estimation errors that would in turn cause system divergence. We applied the first-estimate Jacobian (FEJ) framework and observability constrained (OC) techniques to avoid spurious information and improve consistency. The performance of the proposed estimator is validated using both simulated and real-world datasets.</description><subject>Consistency</subject><subject>Consistency improvements</subject><subject>Extended Kalman filter</subject><subject>Jacobian matrices</subject><subject>Lie groups</subject><subject>Mathematical model</subject><subject>matrix Lie group</subject><subject>Measurement uncertainty</subject><subject>Observability</subject><subject>observability analysis</subject><subject>Robots</subject><subject>Uncertainty</subject><subject>vision-aided inertial navigation</subject><subject>Visual observation</subject><subject>Visualization</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kF1LwzAUhosoOKc_QLwJeN2ZjzZJL8eYczKd4AfelbQ5xYyumUk6Vn-9LROvznvxvC-cJ4quCZ4QgrO7x9f584RiiicMJ1wQeRKNSJrKmIhEng6Z4Thh4vM8uvB-gzHJRCpG0c-68OD2qjC1CR2aNqruvPFINRrNbNPHAE3ZoeV25-wettAEjyrr0IfxrarjZQMuGFWjtbZbCK5DtkHhC9CTCs4c0MoAWjjb7pCt0PzQj2nQ6MV68JfRWaVqD1d_dxy938_fZg_xar1YzqaruKQZCzEnWilZ0aQqpa4KhpVMVCqqUss-UC5AFoJQgRnrAcwZLlMuStAU40SrjI2j2-Nu_8F3Cz7kG9u6_lGf0ySjMuWcJj1FjlTprPcOqnznzFa5Lic4HxTng-J8UJz_Ke47N8eOAYB_PmM45ZKzX-bNeaI</recordid><startdate>20210315</startdate><enddate>20210315</enddate><creator>Tsao, Shu-Hua</creator><creator>Jan, Shau-Shiun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0863-947X</orcidid><orcidid>https://orcid.org/0000-0001-9374-0478</orcidid></search><sort><creationdate>20210315</creationdate><title>Observability Analysis and Consistency Improvements for Visual-Inertial Odometry on the Matrix Lie Group of Extended Poses</title><author>Tsao, Shu-Hua ; Jan, Shau-Shiun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-61daa8f24fc8dfb30a84a57fcd884a267e8b7127033c8d0630c567ced2004da93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Consistency</topic><topic>Consistency improvements</topic><topic>Extended Kalman filter</topic><topic>Jacobian matrices</topic><topic>Lie groups</topic><topic>Mathematical model</topic><topic>matrix Lie group</topic><topic>Measurement uncertainty</topic><topic>Observability</topic><topic>observability analysis</topic><topic>Robots</topic><topic>Uncertainty</topic><topic>vision-aided inertial navigation</topic><topic>Visual observation</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsao, Shu-Hua</creatorcontrib><creatorcontrib>Jan, Shau-Shiun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsao, Shu-Hua</au><au>Jan, Shau-Shiun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Observability Analysis and Consistency Improvements for Visual-Inertial Odometry on the Matrix Lie Group of Extended Poses</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2021-03-15</date><risdate>2021</risdate><volume>21</volume><issue>6</issue><spage>8341</spage><epage>8353</epage><pages>8341-8353</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>In this paper, we present a novel extended Kalman filter (EKF)-based visual-inertial odometry for robotic platforms by modeling the state space as the recently proposed matrix Lie group of extended poses. Specifically, we found that the proposed estimator suffers from an inconsistency similar to that of the conventional <inline-formula> <tex-math notation="LaTeX">SO\left ({3}\right)\times \mathbb {R}^{6} </tex-math></inline-formula> uncertainty representation from the standpoint of an observability analysis. The inconsistency mainly is a result of spurious information along the unobservable directions. An inconsistent estimator would lead to overconfidently reducing the state uncertainty and larger estimation errors that would in turn cause system divergence. We applied the first-estimate Jacobian (FEJ) framework and observability constrained (OC) techniques to avoid spurious information and improve consistency. The performance of the proposed estimator is validated using both simulated and real-world datasets.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2020.3046718</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0863-947X</orcidid><orcidid>https://orcid.org/0000-0001-9374-0478</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2021-03, Vol.21 (6), p.8341-8353 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_proquest_journals_2492856624 |
source | IEEE Xplore (Online service) |
subjects | Consistency Consistency improvements Extended Kalman filter Jacobian matrices Lie groups Mathematical model matrix Lie group Measurement uncertainty Observability observability analysis Robots Uncertainty vision-aided inertial navigation Visual observation Visualization |
title | Observability Analysis and Consistency Improvements for Visual-Inertial Odometry on the Matrix Lie Group of Extended Poses |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T16%3A32%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Observability%20Analysis%20and%20Consistency%20Improvements%20for%20Visual-Inertial%20Odometry%20on%20the%20Matrix%20Lie%20Group%20of%20Extended%20Poses&rft.jtitle=IEEE%20sensors%20journal&rft.au=Tsao,%20Shu-Hua&rft.date=2021-03-15&rft.volume=21&rft.issue=6&rft.spage=8341&rft.epage=8353&rft.pages=8341-8353&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2020.3046718&rft_dat=%3Cproquest_ieee_%3E2492856624%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-61daa8f24fc8dfb30a84a57fcd884a267e8b7127033c8d0630c567ced2004da93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2492856624&rft_id=info:pmid/&rft_ieee_id=9305686&rfr_iscdi=true |