Loading…
Identification of Seasonal Effects in Impulse Responses Using Score-Driven Multivariate Location Models
For policy decisions, capturing seasonal effects in impulse responses are important for the correct specification of dynamic models that measure interaction effects for policy-relevant macroeconomic variables. In this paper, a new multivariate method is suggested, which uses the score-driven quasi-v...
Saved in:
Published in: | Journal of econometric methods 2021-01, Vol.10 (1), p.53-66 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3213-9751aff732ac2cf336956cb9d955279a9c27037e2c7566673aeb14923bd50a743 |
---|---|
cites | cdi_FETCH-LOGICAL-c3213-9751aff732ac2cf336956cb9d955279a9c27037e2c7566673aeb14923bd50a743 |
container_end_page | 66 |
container_issue | 1 |
container_start_page | 53 |
container_title | Journal of econometric methods |
container_volume | 10 |
creator | Blazsek, Szabolcs Escribano, Alvaro Licht, Adrian |
description | For policy decisions, capturing seasonal effects in impulse responses are important for the correct specification of dynamic models that measure interaction effects for policy-relevant macroeconomic variables. In this paper, a new multivariate method is suggested, which uses the score-driven quasi-vector autoregressive (QVAR) model, to capture seasonal effects in impulse response functions (IRFs). The nonlinear QVAR-based method is compared with the existing linear VAR-based method. The following technical aspects of the new method are presented: (i) mathematical formulation of QVAR; (ii) first-order representation and infinite vector moving average, VMA (∞), representation of QVAR; (iii) IRF of QVAR; (iv) statistical inference of QVAR and conditions of consistency and asymptotic normality of the estimates. Control data are used for the period of 1987:Q1 to 2013:Q2, from the following policy-relevant macroeconomic variables: crude oil real price, United States (US) inflation rate, and US real gross domestic product (GDP). A graphical representation of seasonal effects among variables is provided, by using the IRF. According to the estimation results, annual seasonal effects are almost undetected by using the existing linear VAR tool, but those effects are detected by using the new QVAR tool. |
doi_str_mv | 10.1515/jem-2020-0003 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2493118589</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2493118589</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3213-9751aff732ac2cf336956cb9d955279a9c27037e2c7566673aeb14923bd50a743</originalsourceid><addsrcrecordid>eNptkM9LwzAYhosoOHRH7wHP0fxo2sWbzKmDDcG5c8jSLyOja2rSTvbfm7KBF0_fe3i-F94ny-4oeaCCiscd7DEjjGBCCL_IRoyKAhdFmV8OWea44Lm4zsYx7hJBRD5hrBhl23kFTeesM7pzvkHeohXo6Btdo5m1YLqIXIPm-7avI6BPiK1vIkS0jq7ZopXxAfBLcAdo0LKvO3fQwekO0MKfG5e-gjreZldWp4bx-d5k69fZ1_QdLz7e5tPnBTacUY5lKai2tuRMG2Ys54UUhdnISgrBSqmlYSXhJTBTiiKt4xo2NJeMbypBdJnzm-z-1NsG_91D7NTO9yGtiYrlklM6EROZKHyiTPAxBrCqDW6vw1FRogadKulUg0416Ez804n_0XUHoYJt6I8p_JX_-0cJFZz_AiN2etY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2493118589</pqid></control><display><type>article</type><title>Identification of Seasonal Effects in Impulse Responses Using Score-Driven Multivariate Location Models</title><source>EBSCOhost Business Source Ultimate</source><source>ABI/INFORM Global</source><creator>Blazsek, Szabolcs ; Escribano, Alvaro ; Licht, Adrian</creator><creatorcontrib>Blazsek, Szabolcs ; Escribano, Alvaro ; Licht, Adrian</creatorcontrib><description>For policy decisions, capturing seasonal effects in impulse responses are important for the correct specification of dynamic models that measure interaction effects for policy-relevant macroeconomic variables. In this paper, a new multivariate method is suggested, which uses the score-driven quasi-vector autoregressive (QVAR) model, to capture seasonal effects in impulse response functions (IRFs). The nonlinear QVAR-based method is compared with the existing linear VAR-based method. The following technical aspects of the new method are presented: (i) mathematical formulation of QVAR; (ii) first-order representation and infinite vector moving average, VMA (∞), representation of QVAR; (iii) IRF of QVAR; (iv) statistical inference of QVAR and conditions of consistency and asymptotic normality of the estimates. Control data are used for the period of 1987:Q1 to 2013:Q2, from the following policy-relevant macroeconomic variables: crude oil real price, United States (US) inflation rate, and US real gross domestic product (GDP). A graphical representation of seasonal effects among variables is provided, by using the IRF. According to the estimation results, annual seasonal effects are almost undetected by using the existing linear VAR tool, but those effects are detected by using the new QVAR tool.</description><identifier>ISSN: 2194-6345</identifier><identifier>EISSN: 2156-6674</identifier><identifier>DOI: 10.1515/jem-2020-0003</identifier><language>eng</language><publisher>Berlin: De Gruyter</publisher><subject>C32 ; macroeconomic time series data ; Macroeconomics ; quasi-vector autoregressive (QVAR) model ; score-driven time series models ; stochastic seasonality</subject><ispartof>Journal of econometric methods, 2021-01, Vol.10 (1), p.53-66</ispartof><rights>2020 Walter de Gruyter GmbH, Berlin/Boston</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3213-9751aff732ac2cf336956cb9d955279a9c27037e2c7566673aeb14923bd50a743</citedby><cites>FETCH-LOGICAL-c3213-9751aff732ac2cf336956cb9d955279a9c27037e2c7566673aeb14923bd50a743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2493118589?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,44363</link.rule.ids></links><search><creatorcontrib>Blazsek, Szabolcs</creatorcontrib><creatorcontrib>Escribano, Alvaro</creatorcontrib><creatorcontrib>Licht, Adrian</creatorcontrib><title>Identification of Seasonal Effects in Impulse Responses Using Score-Driven Multivariate Location Models</title><title>Journal of econometric methods</title><description>For policy decisions, capturing seasonal effects in impulse responses are important for the correct specification of dynamic models that measure interaction effects for policy-relevant macroeconomic variables. In this paper, a new multivariate method is suggested, which uses the score-driven quasi-vector autoregressive (QVAR) model, to capture seasonal effects in impulse response functions (IRFs). The nonlinear QVAR-based method is compared with the existing linear VAR-based method. The following technical aspects of the new method are presented: (i) mathematical formulation of QVAR; (ii) first-order representation and infinite vector moving average, VMA (∞), representation of QVAR; (iii) IRF of QVAR; (iv) statistical inference of QVAR and conditions of consistency and asymptotic normality of the estimates. Control data are used for the period of 1987:Q1 to 2013:Q2, from the following policy-relevant macroeconomic variables: crude oil real price, United States (US) inflation rate, and US real gross domestic product (GDP). A graphical representation of seasonal effects among variables is provided, by using the IRF. According to the estimation results, annual seasonal effects are almost undetected by using the existing linear VAR tool, but those effects are detected by using the new QVAR tool.</description><subject>C32</subject><subject>macroeconomic time series data</subject><subject>Macroeconomics</subject><subject>quasi-vector autoregressive (QVAR) model</subject><subject>score-driven time series models</subject><subject>stochastic seasonality</subject><issn>2194-6345</issn><issn>2156-6674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNptkM9LwzAYhosoOHRH7wHP0fxo2sWbzKmDDcG5c8jSLyOja2rSTvbfm7KBF0_fe3i-F94ny-4oeaCCiscd7DEjjGBCCL_IRoyKAhdFmV8OWea44Lm4zsYx7hJBRD5hrBhl23kFTeesM7pzvkHeohXo6Btdo5m1YLqIXIPm-7avI6BPiK1vIkS0jq7ZopXxAfBLcAdo0LKvO3fQwekO0MKfG5e-gjreZldWp4bx-d5k69fZ1_QdLz7e5tPnBTacUY5lKai2tuRMG2Ys54UUhdnISgrBSqmlYSXhJTBTiiKt4xo2NJeMbypBdJnzm-z-1NsG_91D7NTO9yGtiYrlklM6EROZKHyiTPAxBrCqDW6vw1FRogadKulUg0416Ez804n_0XUHoYJt6I8p_JX_-0cJFZz_AiN2etY</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Blazsek, Szabolcs</creator><creator>Escribano, Alvaro</creator><creator>Licht, Adrian</creator><general>De Gruyter</general><general>Walter de Gruyter GmbH</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20210101</creationdate><title>Identification of Seasonal Effects in Impulse Responses Using Score-Driven Multivariate Location Models</title><author>Blazsek, Szabolcs ; Escribano, Alvaro ; Licht, Adrian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3213-9751aff732ac2cf336956cb9d955279a9c27037e2c7566673aeb14923bd50a743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>C32</topic><topic>macroeconomic time series data</topic><topic>Macroeconomics</topic><topic>quasi-vector autoregressive (QVAR) model</topic><topic>score-driven time series models</topic><topic>stochastic seasonality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blazsek, Szabolcs</creatorcontrib><creatorcontrib>Escribano, Alvaro</creatorcontrib><creatorcontrib>Licht, Adrian</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of econometric methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blazsek, Szabolcs</au><au>Escribano, Alvaro</au><au>Licht, Adrian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of Seasonal Effects in Impulse Responses Using Score-Driven Multivariate Location Models</atitle><jtitle>Journal of econometric methods</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>10</volume><issue>1</issue><spage>53</spage><epage>66</epage><pages>53-66</pages><issn>2194-6345</issn><eissn>2156-6674</eissn><abstract>For policy decisions, capturing seasonal effects in impulse responses are important for the correct specification of dynamic models that measure interaction effects for policy-relevant macroeconomic variables. In this paper, a new multivariate method is suggested, which uses the score-driven quasi-vector autoregressive (QVAR) model, to capture seasonal effects in impulse response functions (IRFs). The nonlinear QVAR-based method is compared with the existing linear VAR-based method. The following technical aspects of the new method are presented: (i) mathematical formulation of QVAR; (ii) first-order representation and infinite vector moving average, VMA (∞), representation of QVAR; (iii) IRF of QVAR; (iv) statistical inference of QVAR and conditions of consistency and asymptotic normality of the estimates. Control data are used for the period of 1987:Q1 to 2013:Q2, from the following policy-relevant macroeconomic variables: crude oil real price, United States (US) inflation rate, and US real gross domestic product (GDP). A graphical representation of seasonal effects among variables is provided, by using the IRF. According to the estimation results, annual seasonal effects are almost undetected by using the existing linear VAR tool, but those effects are detected by using the new QVAR tool.</abstract><cop>Berlin</cop><pub>De Gruyter</pub><doi>10.1515/jem-2020-0003</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2194-6345 |
ispartof | Journal of econometric methods, 2021-01, Vol.10 (1), p.53-66 |
issn | 2194-6345 2156-6674 |
language | eng |
recordid | cdi_proquest_journals_2493118589 |
source | EBSCOhost Business Source Ultimate; ABI/INFORM Global |
subjects | C32 macroeconomic time series data Macroeconomics quasi-vector autoregressive (QVAR) model score-driven time series models stochastic seasonality |
title | Identification of Seasonal Effects in Impulse Responses Using Score-Driven Multivariate Location Models |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A09%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20Seasonal%20Effects%20in%20Impulse%20Responses%20Using%20Score-Driven%20Multivariate%20Location%20Models&rft.jtitle=Journal%20of%20econometric%20methods&rft.au=Blazsek,%20Szabolcs&rft.date=2021-01-01&rft.volume=10&rft.issue=1&rft.spage=53&rft.epage=66&rft.pages=53-66&rft.issn=2194-6345&rft.eissn=2156-6674&rft_id=info:doi/10.1515/jem-2020-0003&rft_dat=%3Cproquest_cross%3E2493118589%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3213-9751aff732ac2cf336956cb9d955279a9c27037e2c7566673aeb14923bd50a743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2493118589&rft_id=info:pmid/&rfr_iscdi=true |