Loading…

Exact solutions of a fifth - order Korteweg–de Vries –type equation modeling nonlinear long waves in several natural phenomena

In this study we discuss existence of solitary wave solutions of a famous higher-order model evolution equation arising from the water wave theory. This evolution equation describes several nonlinear natural phenomena such as propagation of long waves in shallow water over a flat surface or propagat...

Full description

Saved in:
Bibliographic Details
Main Authors: Nikolova, Elena V., Chilikova-Lubomirova, Mila, Vitanov, Nikolay K.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2321
creator Nikolova, Elena V.
Chilikova-Lubomirova, Mila
Vitanov, Nikolay K.
description In this study we discuss existence of solitary wave solutions of a famous higher-order model evolution equation arising from the water wave theory. This evolution equation describes several nonlinear natural phenomena such as propagation of long waves in shallow water over a flat surface or propagation of long gravity-capillary waves. We obtain several exact analytical solutions of this equation by applying a particular case of the Simplest Equations Method (SEsM).Numerical simulations of the obtained solutions include various kinds of solitary waves depending on a key model parameter.
doi_str_mv 10.1063/5.0040089
format conference_proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2493211864</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2493211864</sourcerecordid><originalsourceid>FETCH-LOGICAL-p253t-db3d5b0e981aefb4dcdd4b6b7d87e7d6805ca6857461932588dc098b71568fdb3</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqWw4AaW2CGl2EnsOEtU8ScqsQHEznLiSZsqtVPbaekOcQVuyElIaSV2rN6M9L0ZvYfQOSUjSnhyxUaEpISI_AANKGM0yjjlh2hASJ5GcZq8HaMT7-eExHmWiQH6vHlXZcDeNl2orfHYVljhqq7CDEfYOg0OP1oXYA3T748vDfjV1eBxP4dNCxiWndoa8cJqaGozxcaaXkE53Nh-XatVj9cGe1iBUw02KnRbbWdg7AKMOkVHlWo8nO11iF5ub57H99Hk6e5hfD2J2pglIdJFollBIBdUQVWkutQ6LXiRaZFBprkgrFRcsCzlNE9iJoQuSS6KjDIuqt49RBe7u62zyw58kHPbOdO_lHHaOygVPO2pyx3lyzr8RpOtqxfKbSQlctuxZHLf8X_wyro_ULa6Sn4AQb-BCA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2493211864</pqid></control><display><type>conference_proceeding</type><title>Exact solutions of a fifth - order Korteweg–de Vries –type equation modeling nonlinear long waves in several natural phenomena</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Nikolova, Elena V. ; Chilikova-Lubomirova, Mila ; Vitanov, Nikolay K.</creator><contributor>Slavova, Angela</contributor><creatorcontrib>Nikolova, Elena V. ; Chilikova-Lubomirova, Mila ; Vitanov, Nikolay K. ; Slavova, Angela</creatorcontrib><description>In this study we discuss existence of solitary wave solutions of a famous higher-order model evolution equation arising from the water wave theory. This evolution equation describes several nonlinear natural phenomena such as propagation of long waves in shallow water over a flat surface or propagation of long gravity-capillary waves. We obtain several exact analytical solutions of this equation by applying a particular case of the Simplest Equations Method (SEsM).Numerical simulations of the obtained solutions include various kinds of solitary waves depending on a key model parameter.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0040089</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Capillary waves ; Evolution ; Exact solutions ; Flat surfaces ; Mathematical models ; Shallow water ; Solitary waves ; Water waves ; Wave propagation</subject><ispartof>AIP conference proceedings, 2021, Vol.2321 (1)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids></links><search><contributor>Slavova, Angela</contributor><creatorcontrib>Nikolova, Elena V.</creatorcontrib><creatorcontrib>Chilikova-Lubomirova, Mila</creatorcontrib><creatorcontrib>Vitanov, Nikolay K.</creatorcontrib><title>Exact solutions of a fifth - order Korteweg–de Vries –type equation modeling nonlinear long waves in several natural phenomena</title><title>AIP conference proceedings</title><description>In this study we discuss existence of solitary wave solutions of a famous higher-order model evolution equation arising from the water wave theory. This evolution equation describes several nonlinear natural phenomena such as propagation of long waves in shallow water over a flat surface or propagation of long gravity-capillary waves. We obtain several exact analytical solutions of this equation by applying a particular case of the Simplest Equations Method (SEsM).Numerical simulations of the obtained solutions include various kinds of solitary waves depending on a key model parameter.</description><subject>Capillary waves</subject><subject>Evolution</subject><subject>Exact solutions</subject><subject>Flat surfaces</subject><subject>Mathematical models</subject><subject>Shallow water</subject><subject>Solitary waves</subject><subject>Water waves</subject><subject>Wave propagation</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kE1OwzAQhS0EEqWw4AaW2CGl2EnsOEtU8ScqsQHEznLiSZsqtVPbaekOcQVuyElIaSV2rN6M9L0ZvYfQOSUjSnhyxUaEpISI_AANKGM0yjjlh2hASJ5GcZq8HaMT7-eExHmWiQH6vHlXZcDeNl2orfHYVljhqq7CDEfYOg0OP1oXYA3T748vDfjV1eBxP4dNCxiWndoa8cJqaGozxcaaXkE53Nh-XatVj9cGe1iBUw02KnRbbWdg7AKMOkVHlWo8nO11iF5ub57H99Hk6e5hfD2J2pglIdJFollBIBdUQVWkutQ6LXiRaZFBprkgrFRcsCzlNE9iJoQuSS6KjDIuqt49RBe7u62zyw58kHPbOdO_lHHaOygVPO2pyx3lyzr8RpOtqxfKbSQlctuxZHLf8X_wyro_ULa6Sn4AQb-BCA</recordid><startdate>20210224</startdate><enddate>20210224</enddate><creator>Nikolova, Elena V.</creator><creator>Chilikova-Lubomirova, Mila</creator><creator>Vitanov, Nikolay K.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20210224</creationdate><title>Exact solutions of a fifth - order Korteweg–de Vries –type equation modeling nonlinear long waves in several natural phenomena</title><author>Nikolova, Elena V. ; Chilikova-Lubomirova, Mila ; Vitanov, Nikolay K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p253t-db3d5b0e981aefb4dcdd4b6b7d87e7d6805ca6857461932588dc098b71568fdb3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Capillary waves</topic><topic>Evolution</topic><topic>Exact solutions</topic><topic>Flat surfaces</topic><topic>Mathematical models</topic><topic>Shallow water</topic><topic>Solitary waves</topic><topic>Water waves</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nikolova, Elena V.</creatorcontrib><creatorcontrib>Chilikova-Lubomirova, Mila</creatorcontrib><creatorcontrib>Vitanov, Nikolay K.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nikolova, Elena V.</au><au>Chilikova-Lubomirova, Mila</au><au>Vitanov, Nikolay K.</au><au>Slavova, Angela</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Exact solutions of a fifth - order Korteweg–de Vries –type equation modeling nonlinear long waves in several natural phenomena</atitle><btitle>AIP conference proceedings</btitle><date>2021-02-24</date><risdate>2021</risdate><volume>2321</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>In this study we discuss existence of solitary wave solutions of a famous higher-order model evolution equation arising from the water wave theory. This evolution equation describes several nonlinear natural phenomena such as propagation of long waves in shallow water over a flat surface or propagation of long gravity-capillary waves. We obtain several exact analytical solutions of this equation by applying a particular case of the Simplest Equations Method (SEsM).Numerical simulations of the obtained solutions include various kinds of solitary waves depending on a key model parameter.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0040089</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2021, Vol.2321 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2493211864
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Capillary waves
Evolution
Exact solutions
Flat surfaces
Mathematical models
Shallow water
Solitary waves
Water waves
Wave propagation
title Exact solutions of a fifth - order Korteweg–de Vries –type equation modeling nonlinear long waves in several natural phenomena
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A29%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Exact%20solutions%20of%20a%20fifth%20-%20order%20Korteweg%E2%80%93de%20Vries%20%E2%80%93type%20equation%20modeling%20nonlinear%20long%20waves%20in%20several%20natural%20phenomena&rft.btitle=AIP%20conference%20proceedings&rft.au=Nikolova,%20Elena%20V.&rft.date=2021-02-24&rft.volume=2321&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0040089&rft_dat=%3Cproquest_scita%3E2493211864%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p253t-db3d5b0e981aefb4dcdd4b6b7d87e7d6805ca6857461932588dc098b71568fdb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2493211864&rft_id=info:pmid/&rfr_iscdi=true