Loading…
Calabi-Yau attractor varieties and degeneration of Hodge structure
We study the structure of string theory flux compactification for a general family of elliptic CY 3-folds. We investigate the locus of the attractor points of the flux compactification in type IIB string theory on the boundary components of period domains. Specifically we give equations describing t...
Saved in:
Published in: | arXiv.org 2021-08 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Rahmati, Mohammad Reza |
description | We study the structure of string theory flux compactification for a general family of elliptic CY 3-folds. We investigate the locus of the attractor points of the flux compactification in type IIB string theory on the boundary components of period domains. Specifically we give equations describing this locus through the asymptotic of nilpotent orbits on period domains. our approach is a mixture of techniques of asymptotic Hodge theory and the numerical period vectors used in physics. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2493269005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2493269005</sourcerecordid><originalsourceid>FETCH-proquest_journals_24932690053</originalsourceid><addsrcrecordid>eNqNykEKwjAQQNEgCBbtHQKuCzFpq91alB7AjasyNtOSUhKdTDy_LjyAq794fyUybcyhOJVab0Qe46yU0vVRV5XJxLmFBR6uuEOSwEwwcCD5BnLIDqMEb6XFCT0SsAtehlF2wU4oI1MaOBHuxHqEJWL-61bsr5db2xVPCq-Ekfs5JPJf6nXZGF03SlXmv-sDzSI6BA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2493269005</pqid></control><display><type>article</type><title>Calabi-Yau attractor varieties and degeneration of Hodge structure</title><source>Publicly Available Content (ProQuest)</source><creator>Rahmati, Mohammad Reza</creator><creatorcontrib>Rahmati, Mohammad Reza</creatorcontrib><description>We study the structure of string theory flux compactification for a general family of elliptic CY 3-folds. We investigate the locus of the attractor points of the flux compactification in type IIB string theory on the boundary components of period domains. Specifically we give equations describing this locus through the asymptotic of nilpotent orbits on period domains. our approach is a mixture of techniques of asymptotic Hodge theory and the numerical period vectors used in physics.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Flux ; Hypergeometric functions ; String theory</subject><ispartof>arXiv.org, 2021-08</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2493269005?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Rahmati, Mohammad Reza</creatorcontrib><title>Calabi-Yau attractor varieties and degeneration of Hodge structure</title><title>arXiv.org</title><description>We study the structure of string theory flux compactification for a general family of elliptic CY 3-folds. We investigate the locus of the attractor points of the flux compactification in type IIB string theory on the boundary components of period domains. Specifically we give equations describing this locus through the asymptotic of nilpotent orbits on period domains. our approach is a mixture of techniques of asymptotic Hodge theory and the numerical period vectors used in physics.</description><subject>Flux</subject><subject>Hypergeometric functions</subject><subject>String theory</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNykEKwjAQQNEgCBbtHQKuCzFpq91alB7AjasyNtOSUhKdTDy_LjyAq794fyUybcyhOJVab0Qe46yU0vVRV5XJxLmFBR6uuEOSwEwwcCD5BnLIDqMEb6XFCT0SsAtehlF2wU4oI1MaOBHuxHqEJWL-61bsr5db2xVPCq-Ekfs5JPJf6nXZGF03SlXmv-sDzSI6BA</recordid><startdate>20210808</startdate><enddate>20210808</enddate><creator>Rahmati, Mohammad Reza</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210808</creationdate><title>Calabi-Yau attractor varieties and degeneration of Hodge structure</title><author>Rahmati, Mohammad Reza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24932690053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Flux</topic><topic>Hypergeometric functions</topic><topic>String theory</topic><toplevel>online_resources</toplevel><creatorcontrib>Rahmati, Mohammad Reza</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rahmati, Mohammad Reza</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Calabi-Yau attractor varieties and degeneration of Hodge structure</atitle><jtitle>arXiv.org</jtitle><date>2021-08-08</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>We study the structure of string theory flux compactification for a general family of elliptic CY 3-folds. We investigate the locus of the attractor points of the flux compactification in type IIB string theory on the boundary components of period domains. Specifically we give equations describing this locus through the asymptotic of nilpotent orbits on period domains. our approach is a mixture of techniques of asymptotic Hodge theory and the numerical period vectors used in physics.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2493269005 |
source | Publicly Available Content (ProQuest) |
subjects | Flux Hypergeometric functions String theory |
title | Calabi-Yau attractor varieties and degeneration of Hodge structure |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A04%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Calabi-Yau%20attractor%20varieties%20and%20degeneration%20of%20Hodge%20structure&rft.jtitle=arXiv.org&rft.au=Rahmati,%20Mohammad%20Reza&rft.date=2021-08-08&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2493269005%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_24932690053%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2493269005&rft_id=info:pmid/&rfr_iscdi=true |