Loading…

Theoretical investigations on the HOMO–LUMO gap and global reactivity descriptor studies, natural bond orbital, and nucleus-independent chemical shifts analyses of 3-phenylbenzo[d]thiazole-2(3H)-imine and its para-substituted derivatives: Solvent and substituent effects

Natural bond orbital analysis, salvation, and substituent effects of electron-releasing (–CH3, –OH) and electron-withdrawing (–Cl, –NO2, –CF3) groups at para positions on the molecular structure of synthesized 3-phenylbenzo[d]thiazole-2(3H)-imine and its derivatives in selected solvents (acetone, to...

Full description

Saved in:
Bibliographic Details
Published in:Journal of chemical research 2021-01, Vol.45 (1-2), p.147-158
Main Authors: Miar, Marzieh, Shiroudi, Abolfazl, Pourshamsian, Khalil, Oliaey, Ahmad Reza, Hatamjafari, Farhad
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Natural bond orbital analysis, salvation, and substituent effects of electron-releasing (–CH3, –OH) and electron-withdrawing (–Cl, –NO2, –CF3) groups at para positions on the molecular structure of synthesized 3-phenylbenzo[d]thiazole-2(3H)-imine and its derivatives in selected solvents (acetone, toluene, and ethanol) and in the gas phase by employing the polarizable continuum method model are studied using the M06-2x method and 6-311++G(d,p) basis set. The relative stability of the studied compounds is influenced by the possibility of intramolecular interactions between substituents and the electron donor–acceptor centers of the thiazole ring. Furthermore, atomic charges, electron density, chemical thermodynamics, energetic properties, dipole moments, and nucleus-independent chemical shifts of the studied compounds and their relative stability are considered. The dipole moment values and the highest occupied molecular orbital–lowest unoccupied molecular orbital energy gaps reveal different charge-transfer possibilities within the considered molecules. Finally, natural bond orbital analysis is carried out to picture the charge transfer between the localized bonds and lone pairs.
ISSN:1747-5198
2047-6507
DOI:10.1177/1747519820932091