Loading…
Quality-Aware Feature Aggregation Network for Robust RGBT Tracking
RGBT tracking becomes a popular computer vision task, and has a variety of applications in visual surveillance systems, self-driving cars and intelligent transportation system. This paper investigates how to perform robust visual tracking in adverse and challenging conditions using complementary vis...
Saved in:
Published in: | IEEE transactions on intelligent vehicles 2021-03, Vol.6 (1), p.121-130 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c291t-4abeab65f7b1bccd0ea19d21a29993b2016785a094717c07f9059d0f404e2413 |
---|---|
cites | cdi_FETCH-LOGICAL-c291t-4abeab65f7b1bccd0ea19d21a29993b2016785a094717c07f9059d0f404e2413 |
container_end_page | 130 |
container_issue | 1 |
container_start_page | 121 |
container_title | IEEE transactions on intelligent vehicles |
container_volume | 6 |
creator | Zhu, Yabin Li, Chenglong Tang, Jin Luo, Bin |
description | RGBT tracking becomes a popular computer vision task, and has a variety of applications in visual surveillance systems, self-driving cars and intelligent transportation system. This paper investigates how to perform robust visual tracking in adverse and challenging conditions using complementary visual and thermal infrared data (RGBT tracking). We propose a novel deep network architecture called quality-aware Feature Aggregation Network (FANet) for robust RGBT tracking. Unlike existing RGBT trackers, our FANet aggregates hierarchical deep features within each modality to dispose the challenge of significant changes in appearance which is triggered by low illumination,deformation, background clutter and occlusion. In particular, we employ the operations of max pooling to transform these hierarchical and multi-resolution features into uniform space with the same resolution, and use 1×1 convolution operation to compress feature dimensions to achieve more effective hierarchical feature aggregation. To model the interactions between RGB and thermal modalities, we elaborately design an adaptive aggregation subnetwork to integrate features from different modalities based on their reliabilities and thus are able to alleviate noise effects introduced by low-quality sources. The whole FANet is trained in an end-to-end manner. Extensive experiments on large-scale benchmark datasets demonstrate the high-accurate performance against other state-of-the-art RGBT tracking methods. |
doi_str_mv | 10.1109/TIV.2020.2980735 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2493595223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9035457</ieee_id><sourcerecordid>2493595223</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-4abeab65f7b1bccd0ea19d21a29993b2016785a094717c07f9059d0f404e2413</originalsourceid><addsrcrecordid>eNo9kE1rwkAQhpfSQsV6L_QS6Dl29svdOapUK0hLJfS6bOImRK1rdxPEf9-Itqd3Ds87MzyEPFIYUgr4ki2-hgwYDBlqUFzekB7jClONIG7_Zi31PRnEuAEAOtJMA_bI5LO1u7o5peOjDS6ZOdu0XY6rKrjKNrXfJ--uOfqwTUofkpXP29gkq_kkS7Jgi229rx7IXWl30Q2u2SfZ7DWbvqXLj_liOl6mBUPapMLmzuYjWaqc5kWxBmcprhm1DBF5zrqflJYWUCiqClAlgsQ1lAKEY4LyPnm-rD0E_9O62JiNb8O-u2iYQC5RMsY7Ci5UEXyMwZXmEOpvG06Ggjm7Mp0rc3Zlrq66ytOlUjvn_nEELoVU_Be1EWNJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2493595223</pqid></control><display><type>article</type><title>Quality-Aware Feature Aggregation Network for Robust RGBT Tracking</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Zhu, Yabin ; Li, Chenglong ; Tang, Jin ; Luo, Bin</creator><creatorcontrib>Zhu, Yabin ; Li, Chenglong ; Tang, Jin ; Luo, Bin</creatorcontrib><description>RGBT tracking becomes a popular computer vision task, and has a variety of applications in visual surveillance systems, self-driving cars and intelligent transportation system. This paper investigates how to perform robust visual tracking in adverse and challenging conditions using complementary visual and thermal infrared data (RGBT tracking). We propose a novel deep network architecture called quality-aware Feature Aggregation Network (FANet) for robust RGBT tracking. Unlike existing RGBT trackers, our FANet aggregates hierarchical deep features within each modality to dispose the challenge of significant changes in appearance which is triggered by low illumination,deformation, background clutter and occlusion. In particular, we employ the operations of max pooling to transform these hierarchical and multi-resolution features into uniform space with the same resolution, and use 1×1 convolution operation to compress feature dimensions to achieve more effective hierarchical feature aggregation. To model the interactions between RGB and thermal modalities, we elaborately design an adaptive aggregation subnetwork to integrate features from different modalities based on their reliabilities and thus are able to alleviate noise effects introduced by low-quality sources. The whole FANet is trained in an end-to-end manner. Extensive experiments on large-scale benchmark datasets demonstrate the high-accurate performance against other state-of-the-art RGBT tracking methods.</description><identifier>ISSN: 2379-8858</identifier><identifier>EISSN: 2379-8904</identifier><identifier>DOI: 10.1109/TIV.2020.2980735</identifier><identifier>CODEN: ITIVBL</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Agglomeration ; Autonomous cars ; Clutter ; Computer architecture ; Computer vision ; Convolution ; feature aggregation ; Feature extraction ; Infrared tracking ; Intelligent transportation systems ; Network architecture ; Occlusion ; Optical tracking ; quality-aware fusion ; Reliability ; RGBT tracking ; Robustness ; Surveillance systems ; Target tracking ; Task analysis ; Transportation networks ; Visualization</subject><ispartof>IEEE transactions on intelligent vehicles, 2021-03, Vol.6 (1), p.121-130</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-4abeab65f7b1bccd0ea19d21a29993b2016785a094717c07f9059d0f404e2413</citedby><cites>FETCH-LOGICAL-c291t-4abeab65f7b1bccd0ea19d21a29993b2016785a094717c07f9059d0f404e2413</cites><orcidid>0000-0002-1000-2750 ; 0000-0002-7233-2739 ; 0000-0001-8375-3590 ; 0000-0001-5948-5055</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9035457$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Zhu, Yabin</creatorcontrib><creatorcontrib>Li, Chenglong</creatorcontrib><creatorcontrib>Tang, Jin</creatorcontrib><creatorcontrib>Luo, Bin</creatorcontrib><title>Quality-Aware Feature Aggregation Network for Robust RGBT Tracking</title><title>IEEE transactions on intelligent vehicles</title><addtitle>TIV</addtitle><description>RGBT tracking becomes a popular computer vision task, and has a variety of applications in visual surveillance systems, self-driving cars and intelligent transportation system. This paper investigates how to perform robust visual tracking in adverse and challenging conditions using complementary visual and thermal infrared data (RGBT tracking). We propose a novel deep network architecture called quality-aware Feature Aggregation Network (FANet) for robust RGBT tracking. Unlike existing RGBT trackers, our FANet aggregates hierarchical deep features within each modality to dispose the challenge of significant changes in appearance which is triggered by low illumination,deformation, background clutter and occlusion. In particular, we employ the operations of max pooling to transform these hierarchical and multi-resolution features into uniform space with the same resolution, and use 1×1 convolution operation to compress feature dimensions to achieve more effective hierarchical feature aggregation. To model the interactions between RGB and thermal modalities, we elaborately design an adaptive aggregation subnetwork to integrate features from different modalities based on their reliabilities and thus are able to alleviate noise effects introduced by low-quality sources. The whole FANet is trained in an end-to-end manner. Extensive experiments on large-scale benchmark datasets demonstrate the high-accurate performance against other state-of-the-art RGBT tracking methods.</description><subject>Agglomeration</subject><subject>Autonomous cars</subject><subject>Clutter</subject><subject>Computer architecture</subject><subject>Computer vision</subject><subject>Convolution</subject><subject>feature aggregation</subject><subject>Feature extraction</subject><subject>Infrared tracking</subject><subject>Intelligent transportation systems</subject><subject>Network architecture</subject><subject>Occlusion</subject><subject>Optical tracking</subject><subject>quality-aware fusion</subject><subject>Reliability</subject><subject>RGBT tracking</subject><subject>Robustness</subject><subject>Surveillance systems</subject><subject>Target tracking</subject><subject>Task analysis</subject><subject>Transportation networks</subject><subject>Visualization</subject><issn>2379-8858</issn><issn>2379-8904</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kE1rwkAQhpfSQsV6L_QS6Dl29svdOapUK0hLJfS6bOImRK1rdxPEf9-Itqd3Ds87MzyEPFIYUgr4ki2-hgwYDBlqUFzekB7jClONIG7_Zi31PRnEuAEAOtJMA_bI5LO1u7o5peOjDS6ZOdu0XY6rKrjKNrXfJ--uOfqwTUofkpXP29gkq_kkS7Jgi229rx7IXWl30Q2u2SfZ7DWbvqXLj_liOl6mBUPapMLmzuYjWaqc5kWxBmcprhm1DBF5zrqflJYWUCiqClAlgsQ1lAKEY4LyPnm-rD0E_9O62JiNb8O-u2iYQC5RMsY7Ci5UEXyMwZXmEOpvG06Ggjm7Mp0rc3Zlrq66ytOlUjvn_nEELoVU_Be1EWNJ</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Zhu, Yabin</creator><creator>Li, Chenglong</creator><creator>Tang, Jin</creator><creator>Luo, Bin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1000-2750</orcidid><orcidid>https://orcid.org/0000-0002-7233-2739</orcidid><orcidid>https://orcid.org/0000-0001-8375-3590</orcidid><orcidid>https://orcid.org/0000-0001-5948-5055</orcidid></search><sort><creationdate>20210301</creationdate><title>Quality-Aware Feature Aggregation Network for Robust RGBT Tracking</title><author>Zhu, Yabin ; Li, Chenglong ; Tang, Jin ; Luo, Bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-4abeab65f7b1bccd0ea19d21a29993b2016785a094717c07f9059d0f404e2413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Agglomeration</topic><topic>Autonomous cars</topic><topic>Clutter</topic><topic>Computer architecture</topic><topic>Computer vision</topic><topic>Convolution</topic><topic>feature aggregation</topic><topic>Feature extraction</topic><topic>Infrared tracking</topic><topic>Intelligent transportation systems</topic><topic>Network architecture</topic><topic>Occlusion</topic><topic>Optical tracking</topic><topic>quality-aware fusion</topic><topic>Reliability</topic><topic>RGBT tracking</topic><topic>Robustness</topic><topic>Surveillance systems</topic><topic>Target tracking</topic><topic>Task analysis</topic><topic>Transportation networks</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Yabin</creatorcontrib><creatorcontrib>Li, Chenglong</creatorcontrib><creatorcontrib>Tang, Jin</creatorcontrib><creatorcontrib>Luo, Bin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on intelligent vehicles</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Yabin</au><au>Li, Chenglong</au><au>Tang, Jin</au><au>Luo, Bin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quality-Aware Feature Aggregation Network for Robust RGBT Tracking</atitle><jtitle>IEEE transactions on intelligent vehicles</jtitle><stitle>TIV</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>6</volume><issue>1</issue><spage>121</spage><epage>130</epage><pages>121-130</pages><issn>2379-8858</issn><eissn>2379-8904</eissn><coden>ITIVBL</coden><abstract>RGBT tracking becomes a popular computer vision task, and has a variety of applications in visual surveillance systems, self-driving cars and intelligent transportation system. This paper investigates how to perform robust visual tracking in adverse and challenging conditions using complementary visual and thermal infrared data (RGBT tracking). We propose a novel deep network architecture called quality-aware Feature Aggregation Network (FANet) for robust RGBT tracking. Unlike existing RGBT trackers, our FANet aggregates hierarchical deep features within each modality to dispose the challenge of significant changes in appearance which is triggered by low illumination,deformation, background clutter and occlusion. In particular, we employ the operations of max pooling to transform these hierarchical and multi-resolution features into uniform space with the same resolution, and use 1×1 convolution operation to compress feature dimensions to achieve more effective hierarchical feature aggregation. To model the interactions between RGB and thermal modalities, we elaborately design an adaptive aggregation subnetwork to integrate features from different modalities based on their reliabilities and thus are able to alleviate noise effects introduced by low-quality sources. The whole FANet is trained in an end-to-end manner. Extensive experiments on large-scale benchmark datasets demonstrate the high-accurate performance against other state-of-the-art RGBT tracking methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TIV.2020.2980735</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1000-2750</orcidid><orcidid>https://orcid.org/0000-0002-7233-2739</orcidid><orcidid>https://orcid.org/0000-0001-8375-3590</orcidid><orcidid>https://orcid.org/0000-0001-5948-5055</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2379-8858 |
ispartof | IEEE transactions on intelligent vehicles, 2021-03, Vol.6 (1), p.121-130 |
issn | 2379-8858 2379-8904 |
language | eng |
recordid | cdi_proquest_journals_2493595223 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Agglomeration Autonomous cars Clutter Computer architecture Computer vision Convolution feature aggregation Feature extraction Infrared tracking Intelligent transportation systems Network architecture Occlusion Optical tracking quality-aware fusion Reliability RGBT tracking Robustness Surveillance systems Target tracking Task analysis Transportation networks Visualization |
title | Quality-Aware Feature Aggregation Network for Robust RGBT Tracking |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A22%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quality-Aware%20Feature%20Aggregation%20Network%20for%20Robust%20RGBT%20Tracking&rft.jtitle=IEEE%20transactions%20on%20intelligent%20vehicles&rft.au=Zhu,%20Yabin&rft.date=2021-03-01&rft.volume=6&rft.issue=1&rft.spage=121&rft.epage=130&rft.pages=121-130&rft.issn=2379-8858&rft.eissn=2379-8904&rft.coden=ITIVBL&rft_id=info:doi/10.1109/TIV.2020.2980735&rft_dat=%3Cproquest_ieee_%3E2493595223%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-4abeab65f7b1bccd0ea19d21a29993b2016785a094717c07f9059d0f404e2413%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2493595223&rft_id=info:pmid/&rft_ieee_id=9035457&rfr_iscdi=true |