Loading…

Quality-Aware Feature Aggregation Network for Robust RGBT Tracking

RGBT tracking becomes a popular computer vision task, and has a variety of applications in visual surveillance systems, self-driving cars and intelligent transportation system. This paper investigates how to perform robust visual tracking in adverse and challenging conditions using complementary vis...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on intelligent vehicles 2021-03, Vol.6 (1), p.121-130
Main Authors: Zhu, Yabin, Li, Chenglong, Tang, Jin, Luo, Bin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-4abeab65f7b1bccd0ea19d21a29993b2016785a094717c07f9059d0f404e2413
cites cdi_FETCH-LOGICAL-c291t-4abeab65f7b1bccd0ea19d21a29993b2016785a094717c07f9059d0f404e2413
container_end_page 130
container_issue 1
container_start_page 121
container_title IEEE transactions on intelligent vehicles
container_volume 6
creator Zhu, Yabin
Li, Chenglong
Tang, Jin
Luo, Bin
description RGBT tracking becomes a popular computer vision task, and has a variety of applications in visual surveillance systems, self-driving cars and intelligent transportation system. This paper investigates how to perform robust visual tracking in adverse and challenging conditions using complementary visual and thermal infrared data (RGBT tracking). We propose a novel deep network architecture called quality-aware Feature Aggregation Network (FANet) for robust RGBT tracking. Unlike existing RGBT trackers, our FANet aggregates hierarchical deep features within each modality to dispose the challenge of significant changes in appearance which is triggered by low illumination,deformation, background clutter and occlusion. In particular, we employ the operations of max pooling to transform these hierarchical and multi-resolution features into uniform space with the same resolution, and use 1×1 convolution operation to compress feature dimensions to achieve more effective hierarchical feature aggregation. To model the interactions between RGB and thermal modalities, we elaborately design an adaptive aggregation subnetwork to integrate features from different modalities based on their reliabilities and thus are able to alleviate noise effects introduced by low-quality sources. The whole FANet is trained in an end-to-end manner. Extensive experiments on large-scale benchmark datasets demonstrate the high-accurate performance against other state-of-the-art RGBT tracking methods.
doi_str_mv 10.1109/TIV.2020.2980735
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2493595223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9035457</ieee_id><sourcerecordid>2493595223</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-4abeab65f7b1bccd0ea19d21a29993b2016785a094717c07f9059d0f404e2413</originalsourceid><addsrcrecordid>eNo9kE1rwkAQhpfSQsV6L_QS6Dl29svdOapUK0hLJfS6bOImRK1rdxPEf9-Itqd3Ds87MzyEPFIYUgr4ki2-hgwYDBlqUFzekB7jClONIG7_Zi31PRnEuAEAOtJMA_bI5LO1u7o5peOjDS6ZOdu0XY6rKrjKNrXfJ--uOfqwTUofkpXP29gkq_kkS7Jgi229rx7IXWl30Q2u2SfZ7DWbvqXLj_liOl6mBUPapMLmzuYjWaqc5kWxBmcprhm1DBF5zrqflJYWUCiqClAlgsQ1lAKEY4LyPnm-rD0E_9O62JiNb8O-u2iYQC5RMsY7Ci5UEXyMwZXmEOpvG06Ggjm7Mp0rc3Zlrq66ytOlUjvn_nEELoVU_Be1EWNJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2493595223</pqid></control><display><type>article</type><title>Quality-Aware Feature Aggregation Network for Robust RGBT Tracking</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Zhu, Yabin ; Li, Chenglong ; Tang, Jin ; Luo, Bin</creator><creatorcontrib>Zhu, Yabin ; Li, Chenglong ; Tang, Jin ; Luo, Bin</creatorcontrib><description>RGBT tracking becomes a popular computer vision task, and has a variety of applications in visual surveillance systems, self-driving cars and intelligent transportation system. This paper investigates how to perform robust visual tracking in adverse and challenging conditions using complementary visual and thermal infrared data (RGBT tracking). We propose a novel deep network architecture called quality-aware Feature Aggregation Network (FANet) for robust RGBT tracking. Unlike existing RGBT trackers, our FANet aggregates hierarchical deep features within each modality to dispose the challenge of significant changes in appearance which is triggered by low illumination,deformation, background clutter and occlusion. In particular, we employ the operations of max pooling to transform these hierarchical and multi-resolution features into uniform space with the same resolution, and use 1×1 convolution operation to compress feature dimensions to achieve more effective hierarchical feature aggregation. To model the interactions between RGB and thermal modalities, we elaborately design an adaptive aggregation subnetwork to integrate features from different modalities based on their reliabilities and thus are able to alleviate noise effects introduced by low-quality sources. The whole FANet is trained in an end-to-end manner. Extensive experiments on large-scale benchmark datasets demonstrate the high-accurate performance against other state-of-the-art RGBT tracking methods.</description><identifier>ISSN: 2379-8858</identifier><identifier>EISSN: 2379-8904</identifier><identifier>DOI: 10.1109/TIV.2020.2980735</identifier><identifier>CODEN: ITIVBL</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Agglomeration ; Autonomous cars ; Clutter ; Computer architecture ; Computer vision ; Convolution ; feature aggregation ; Feature extraction ; Infrared tracking ; Intelligent transportation systems ; Network architecture ; Occlusion ; Optical tracking ; quality-aware fusion ; Reliability ; RGBT tracking ; Robustness ; Surveillance systems ; Target tracking ; Task analysis ; Transportation networks ; Visualization</subject><ispartof>IEEE transactions on intelligent vehicles, 2021-03, Vol.6 (1), p.121-130</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-4abeab65f7b1bccd0ea19d21a29993b2016785a094717c07f9059d0f404e2413</citedby><cites>FETCH-LOGICAL-c291t-4abeab65f7b1bccd0ea19d21a29993b2016785a094717c07f9059d0f404e2413</cites><orcidid>0000-0002-1000-2750 ; 0000-0002-7233-2739 ; 0000-0001-8375-3590 ; 0000-0001-5948-5055</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9035457$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Zhu, Yabin</creatorcontrib><creatorcontrib>Li, Chenglong</creatorcontrib><creatorcontrib>Tang, Jin</creatorcontrib><creatorcontrib>Luo, Bin</creatorcontrib><title>Quality-Aware Feature Aggregation Network for Robust RGBT Tracking</title><title>IEEE transactions on intelligent vehicles</title><addtitle>TIV</addtitle><description>RGBT tracking becomes a popular computer vision task, and has a variety of applications in visual surveillance systems, self-driving cars and intelligent transportation system. This paper investigates how to perform robust visual tracking in adverse and challenging conditions using complementary visual and thermal infrared data (RGBT tracking). We propose a novel deep network architecture called quality-aware Feature Aggregation Network (FANet) for robust RGBT tracking. Unlike existing RGBT trackers, our FANet aggregates hierarchical deep features within each modality to dispose the challenge of significant changes in appearance which is triggered by low illumination,deformation, background clutter and occlusion. In particular, we employ the operations of max pooling to transform these hierarchical and multi-resolution features into uniform space with the same resolution, and use 1×1 convolution operation to compress feature dimensions to achieve more effective hierarchical feature aggregation. To model the interactions between RGB and thermal modalities, we elaborately design an adaptive aggregation subnetwork to integrate features from different modalities based on their reliabilities and thus are able to alleviate noise effects introduced by low-quality sources. The whole FANet is trained in an end-to-end manner. Extensive experiments on large-scale benchmark datasets demonstrate the high-accurate performance against other state-of-the-art RGBT tracking methods.</description><subject>Agglomeration</subject><subject>Autonomous cars</subject><subject>Clutter</subject><subject>Computer architecture</subject><subject>Computer vision</subject><subject>Convolution</subject><subject>feature aggregation</subject><subject>Feature extraction</subject><subject>Infrared tracking</subject><subject>Intelligent transportation systems</subject><subject>Network architecture</subject><subject>Occlusion</subject><subject>Optical tracking</subject><subject>quality-aware fusion</subject><subject>Reliability</subject><subject>RGBT tracking</subject><subject>Robustness</subject><subject>Surveillance systems</subject><subject>Target tracking</subject><subject>Task analysis</subject><subject>Transportation networks</subject><subject>Visualization</subject><issn>2379-8858</issn><issn>2379-8904</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kE1rwkAQhpfSQsV6L_QS6Dl29svdOapUK0hLJfS6bOImRK1rdxPEf9-Itqd3Ds87MzyEPFIYUgr4ki2-hgwYDBlqUFzekB7jClONIG7_Zi31PRnEuAEAOtJMA_bI5LO1u7o5peOjDS6ZOdu0XY6rKrjKNrXfJ--uOfqwTUofkpXP29gkq_kkS7Jgi229rx7IXWl30Q2u2SfZ7DWbvqXLj_liOl6mBUPapMLmzuYjWaqc5kWxBmcprhm1DBF5zrqflJYWUCiqClAlgsQ1lAKEY4LyPnm-rD0E_9O62JiNb8O-u2iYQC5RMsY7Ci5UEXyMwZXmEOpvG06Ggjm7Mp0rc3Zlrq66ytOlUjvn_nEELoVU_Be1EWNJ</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Zhu, Yabin</creator><creator>Li, Chenglong</creator><creator>Tang, Jin</creator><creator>Luo, Bin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1000-2750</orcidid><orcidid>https://orcid.org/0000-0002-7233-2739</orcidid><orcidid>https://orcid.org/0000-0001-8375-3590</orcidid><orcidid>https://orcid.org/0000-0001-5948-5055</orcidid></search><sort><creationdate>20210301</creationdate><title>Quality-Aware Feature Aggregation Network for Robust RGBT Tracking</title><author>Zhu, Yabin ; Li, Chenglong ; Tang, Jin ; Luo, Bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-4abeab65f7b1bccd0ea19d21a29993b2016785a094717c07f9059d0f404e2413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Agglomeration</topic><topic>Autonomous cars</topic><topic>Clutter</topic><topic>Computer architecture</topic><topic>Computer vision</topic><topic>Convolution</topic><topic>feature aggregation</topic><topic>Feature extraction</topic><topic>Infrared tracking</topic><topic>Intelligent transportation systems</topic><topic>Network architecture</topic><topic>Occlusion</topic><topic>Optical tracking</topic><topic>quality-aware fusion</topic><topic>Reliability</topic><topic>RGBT tracking</topic><topic>Robustness</topic><topic>Surveillance systems</topic><topic>Target tracking</topic><topic>Task analysis</topic><topic>Transportation networks</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Yabin</creatorcontrib><creatorcontrib>Li, Chenglong</creatorcontrib><creatorcontrib>Tang, Jin</creatorcontrib><creatorcontrib>Luo, Bin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on intelligent vehicles</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Yabin</au><au>Li, Chenglong</au><au>Tang, Jin</au><au>Luo, Bin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quality-Aware Feature Aggregation Network for Robust RGBT Tracking</atitle><jtitle>IEEE transactions on intelligent vehicles</jtitle><stitle>TIV</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>6</volume><issue>1</issue><spage>121</spage><epage>130</epage><pages>121-130</pages><issn>2379-8858</issn><eissn>2379-8904</eissn><coden>ITIVBL</coden><abstract>RGBT tracking becomes a popular computer vision task, and has a variety of applications in visual surveillance systems, self-driving cars and intelligent transportation system. This paper investigates how to perform robust visual tracking in adverse and challenging conditions using complementary visual and thermal infrared data (RGBT tracking). We propose a novel deep network architecture called quality-aware Feature Aggregation Network (FANet) for robust RGBT tracking. Unlike existing RGBT trackers, our FANet aggregates hierarchical deep features within each modality to dispose the challenge of significant changes in appearance which is triggered by low illumination,deformation, background clutter and occlusion. In particular, we employ the operations of max pooling to transform these hierarchical and multi-resolution features into uniform space with the same resolution, and use 1×1 convolution operation to compress feature dimensions to achieve more effective hierarchical feature aggregation. To model the interactions between RGB and thermal modalities, we elaborately design an adaptive aggregation subnetwork to integrate features from different modalities based on their reliabilities and thus are able to alleviate noise effects introduced by low-quality sources. The whole FANet is trained in an end-to-end manner. Extensive experiments on large-scale benchmark datasets demonstrate the high-accurate performance against other state-of-the-art RGBT tracking methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TIV.2020.2980735</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1000-2750</orcidid><orcidid>https://orcid.org/0000-0002-7233-2739</orcidid><orcidid>https://orcid.org/0000-0001-8375-3590</orcidid><orcidid>https://orcid.org/0000-0001-5948-5055</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2379-8858
ispartof IEEE transactions on intelligent vehicles, 2021-03, Vol.6 (1), p.121-130
issn 2379-8858
2379-8904
language eng
recordid cdi_proquest_journals_2493595223
source IEEE Electronic Library (IEL) Journals
subjects Agglomeration
Autonomous cars
Clutter
Computer architecture
Computer vision
Convolution
feature aggregation
Feature extraction
Infrared tracking
Intelligent transportation systems
Network architecture
Occlusion
Optical tracking
quality-aware fusion
Reliability
RGBT tracking
Robustness
Surveillance systems
Target tracking
Task analysis
Transportation networks
Visualization
title Quality-Aware Feature Aggregation Network for Robust RGBT Tracking
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A22%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quality-Aware%20Feature%20Aggregation%20Network%20for%20Robust%20RGBT%20Tracking&rft.jtitle=IEEE%20transactions%20on%20intelligent%20vehicles&rft.au=Zhu,%20Yabin&rft.date=2021-03-01&rft.volume=6&rft.issue=1&rft.spage=121&rft.epage=130&rft.pages=121-130&rft.issn=2379-8858&rft.eissn=2379-8904&rft.coden=ITIVBL&rft_id=info:doi/10.1109/TIV.2020.2980735&rft_dat=%3Cproquest_ieee_%3E2493595223%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-4abeab65f7b1bccd0ea19d21a29993b2016785a094717c07f9059d0f404e2413%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2493595223&rft_id=info:pmid/&rft_ieee_id=9035457&rfr_iscdi=true