Loading…
A Ni–CoWB composite developed by devitrification of Ni–Co–W–B bulk metallic glass
The effects of annealing on microstructure and mechanical properties of Ni36.3Co25W23.7B15 bulk metallic glass are investigated. Composite samples were produced by annealing amorphous samples of the alloy above the crystallization temperature. Microstructural examinations revealed that nickel solid...
Saved in:
Published in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2021-01, Vol.803, p.140479, Article 140479 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c328t-268bba6775205f85a890778a21b6fbd59e1342d50c7eb54aef8a0c8f00c738833 |
---|---|
cites | cdi_FETCH-LOGICAL-c328t-268bba6775205f85a890778a21b6fbd59e1342d50c7eb54aef8a0c8f00c738833 |
container_end_page | |
container_issue | |
container_start_page | 140479 |
container_title | Materials science & engineering. A, Structural materials : properties, microstructure and processing |
container_volume | 803 |
creator | Hitit, Aytekin Yazici, Ziya Ozgur Öztürk, Pelin Şahin, Hakan Aşgın, Ahmet Malik Hitit, Burcu |
description | The effects of annealing on microstructure and mechanical properties of Ni36.3Co25W23.7B15 bulk metallic glass are investigated. Composite samples were produced by annealing amorphous samples of the alloy above the crystallization temperature. Microstructural examinations revealed that nickel solid solution and CoWB phase precipitate upon annealing. Fully crystallized composite samples contain about 60 vol% nickel solid solution and 40 vol% CoWB phase. Microhardness of the amorphous alloy is determined to be 1168 HV. Composites having microhardness values higher than 1400 HV are obtained. Improvement in microhardness is caused by the formation of CoWB phase, whose microhardness is determined to be between 4500 and 5000 HV. This is the first composite reinforced by CoWB phase. Indentation fracture toughness of the composite having peak hardness ranges between 2.44 and 4.67MPam. It is found that further annealing results in slightly lower microhardness but higher indentation fracture toughness, which is between 3.55 and 6.45MPam. The effects of microstructure on microhardness and indentation fracture toughness of the composites are discussed.
•The first composite reinforced by the ultra-hard CoWB phase is developed.•The fully crystallized composites contain about 60 vol% FCC-Ni and 40 vol% CoWB.•Composites having microhardness values higher than 1400 HV are obtained.•The microhardness of CoWB phase is determined to be between 4500 and 5000 HV.•Increasing boron content is expected to improve both microhardness and toughness. |
doi_str_mv | 10.1016/j.msea.2020.140479 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2493861486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509320315422</els_id><sourcerecordid>2493861486</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-268bba6775205f85a890778a21b6fbd59e1342d50c7eb54aef8a0c8f00c738833</originalsourceid><addsrcrecordid>eNp9UMlOwzAQtRBIlMIPcLLEOcVLFkfiUio2qYILqOJkOc4YOSR1sdNKvfEP_CFfgqPAlcPMaJ7em-UhdE7JjBKaXzazLoCaMcIikJK0KA_QhIqCJ2nJ80M0ISWjSUZKfoxOQmgIIZGWTdDrHD_a78-vhVtdY-26jQu2B1zDDlq3gRpX-6GxvbfGatVbt8bO_GliWsW4xtW2fccd9KptrcZvrQrhFB0Z1QY4-61T9HJ787y4T5ZPdw-L-TLRnIk-YbmoKpUXRcZIZkSmREmKQihGq9xUdVYC5SmrM6ILqLJUgRGKaGFIBLgQnE_RxTh3493HFkIvG7f167hSsvi8yGkq8shiI0t7F4IHIzfedsrvJSVysFA2crBQDhbK0cIouhpFEO_fWfAyaAtrDbX1oHtZO_uf_Ad63nx9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2493861486</pqid></control><display><type>article</type><title>A Ni–CoWB composite developed by devitrification of Ni–Co–W–B bulk metallic glass</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Hitit, Aytekin ; Yazici, Ziya Ozgur ; Öztürk, Pelin ; Şahin, Hakan ; Aşgın, Ahmet Malik ; Hitit, Burcu</creator><creatorcontrib>Hitit, Aytekin ; Yazici, Ziya Ozgur ; Öztürk, Pelin ; Şahin, Hakan ; Aşgın, Ahmet Malik ; Hitit, Burcu</creatorcontrib><description>The effects of annealing on microstructure and mechanical properties of Ni36.3Co25W23.7B15 bulk metallic glass are investigated. Composite samples were produced by annealing amorphous samples of the alloy above the crystallization temperature. Microstructural examinations revealed that nickel solid solution and CoWB phase precipitate upon annealing. Fully crystallized composite samples contain about 60 vol% nickel solid solution and 40 vol% CoWB phase. Microhardness of the amorphous alloy is determined to be 1168 HV. Composites having microhardness values higher than 1400 HV are obtained. Improvement in microhardness is caused by the formation of CoWB phase, whose microhardness is determined to be between 4500 and 5000 HV. This is the first composite reinforced by CoWB phase. Indentation fracture toughness of the composite having peak hardness ranges between 2.44 and 4.67MPam. It is found that further annealing results in slightly lower microhardness but higher indentation fracture toughness, which is between 3.55 and 6.45MPam. The effects of microstructure on microhardness and indentation fracture toughness of the composites are discussed.
•The first composite reinforced by the ultra-hard CoWB phase is developed.•The fully crystallized composites contain about 60 vol% FCC-Ni and 40 vol% CoWB.•Composites having microhardness values higher than 1400 HV are obtained.•The microhardness of CoWB phase is determined to be between 4500 and 5000 HV.•Increasing boron content is expected to improve both microhardness and toughness.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2020.140479</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Amorphous alloys ; Amorphous materials ; Annealing ; Composite ; Composite materials ; CoWB phase ; Crystallization ; Devitrification ; Fracture toughness ; Indentation ; Mechanical properties ; Metallic glass ; Metallic glasses ; Microhardness ; Microstructure ; Nickel ; Precipitation hardening ; Solid solutions</subject><ispartof>Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2021-01, Vol.803, p.140479, Article 140479</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jan 28, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-268bba6775205f85a890778a21b6fbd59e1342d50c7eb54aef8a0c8f00c738833</citedby><cites>FETCH-LOGICAL-c328t-268bba6775205f85a890778a21b6fbd59e1342d50c7eb54aef8a0c8f00c738833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hitit, Aytekin</creatorcontrib><creatorcontrib>Yazici, Ziya Ozgur</creatorcontrib><creatorcontrib>Öztürk, Pelin</creatorcontrib><creatorcontrib>Şahin, Hakan</creatorcontrib><creatorcontrib>Aşgın, Ahmet Malik</creatorcontrib><creatorcontrib>Hitit, Burcu</creatorcontrib><title>A Ni–CoWB composite developed by devitrification of Ni–Co–W–B bulk metallic glass</title><title>Materials science & engineering. A, Structural materials : properties, microstructure and processing</title><description>The effects of annealing on microstructure and mechanical properties of Ni36.3Co25W23.7B15 bulk metallic glass are investigated. Composite samples were produced by annealing amorphous samples of the alloy above the crystallization temperature. Microstructural examinations revealed that nickel solid solution and CoWB phase precipitate upon annealing. Fully crystallized composite samples contain about 60 vol% nickel solid solution and 40 vol% CoWB phase. Microhardness of the amorphous alloy is determined to be 1168 HV. Composites having microhardness values higher than 1400 HV are obtained. Improvement in microhardness is caused by the formation of CoWB phase, whose microhardness is determined to be between 4500 and 5000 HV. This is the first composite reinforced by CoWB phase. Indentation fracture toughness of the composite having peak hardness ranges between 2.44 and 4.67MPam. It is found that further annealing results in slightly lower microhardness but higher indentation fracture toughness, which is between 3.55 and 6.45MPam. The effects of microstructure on microhardness and indentation fracture toughness of the composites are discussed.
•The first composite reinforced by the ultra-hard CoWB phase is developed.•The fully crystallized composites contain about 60 vol% FCC-Ni and 40 vol% CoWB.•Composites having microhardness values higher than 1400 HV are obtained.•The microhardness of CoWB phase is determined to be between 4500 and 5000 HV.•Increasing boron content is expected to improve both microhardness and toughness.</description><subject>Amorphous alloys</subject><subject>Amorphous materials</subject><subject>Annealing</subject><subject>Composite</subject><subject>Composite materials</subject><subject>CoWB phase</subject><subject>Crystallization</subject><subject>Devitrification</subject><subject>Fracture toughness</subject><subject>Indentation</subject><subject>Mechanical properties</subject><subject>Metallic glass</subject><subject>Metallic glasses</subject><subject>Microhardness</subject><subject>Microstructure</subject><subject>Nickel</subject><subject>Precipitation hardening</subject><subject>Solid solutions</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UMlOwzAQtRBIlMIPcLLEOcVLFkfiUio2qYILqOJkOc4YOSR1sdNKvfEP_CFfgqPAlcPMaJ7em-UhdE7JjBKaXzazLoCaMcIikJK0KA_QhIqCJ2nJ80M0ISWjSUZKfoxOQmgIIZGWTdDrHD_a78-vhVtdY-26jQu2B1zDDlq3gRpX-6GxvbfGatVbt8bO_GliWsW4xtW2fccd9KptrcZvrQrhFB0Z1QY4-61T9HJ787y4T5ZPdw-L-TLRnIk-YbmoKpUXRcZIZkSmREmKQihGq9xUdVYC5SmrM6ILqLJUgRGKaGFIBLgQnE_RxTh3493HFkIvG7f167hSsvi8yGkq8shiI0t7F4IHIzfedsrvJSVysFA2crBQDhbK0cIouhpFEO_fWfAyaAtrDbX1oHtZO_uf_Ad63nx9</recordid><startdate>20210128</startdate><enddate>20210128</enddate><creator>Hitit, Aytekin</creator><creator>Yazici, Ziya Ozgur</creator><creator>Öztürk, Pelin</creator><creator>Şahin, Hakan</creator><creator>Aşgın, Ahmet Malik</creator><creator>Hitit, Burcu</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20210128</creationdate><title>A Ni–CoWB composite developed by devitrification of Ni–Co–W–B bulk metallic glass</title><author>Hitit, Aytekin ; Yazici, Ziya Ozgur ; Öztürk, Pelin ; Şahin, Hakan ; Aşgın, Ahmet Malik ; Hitit, Burcu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-268bba6775205f85a890778a21b6fbd59e1342d50c7eb54aef8a0c8f00c738833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amorphous alloys</topic><topic>Amorphous materials</topic><topic>Annealing</topic><topic>Composite</topic><topic>Composite materials</topic><topic>CoWB phase</topic><topic>Crystallization</topic><topic>Devitrification</topic><topic>Fracture toughness</topic><topic>Indentation</topic><topic>Mechanical properties</topic><topic>Metallic glass</topic><topic>Metallic glasses</topic><topic>Microhardness</topic><topic>Microstructure</topic><topic>Nickel</topic><topic>Precipitation hardening</topic><topic>Solid solutions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hitit, Aytekin</creatorcontrib><creatorcontrib>Yazici, Ziya Ozgur</creatorcontrib><creatorcontrib>Öztürk, Pelin</creatorcontrib><creatorcontrib>Şahin, Hakan</creatorcontrib><creatorcontrib>Aşgın, Ahmet Malik</creatorcontrib><creatorcontrib>Hitit, Burcu</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hitit, Aytekin</au><au>Yazici, Ziya Ozgur</au><au>Öztürk, Pelin</au><au>Şahin, Hakan</au><au>Aşgın, Ahmet Malik</au><au>Hitit, Burcu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Ni–CoWB composite developed by devitrification of Ni–Co–W–B bulk metallic glass</atitle><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2021-01-28</date><risdate>2021</risdate><volume>803</volume><spage>140479</spage><pages>140479-</pages><artnum>140479</artnum><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>The effects of annealing on microstructure and mechanical properties of Ni36.3Co25W23.7B15 bulk metallic glass are investigated. Composite samples were produced by annealing amorphous samples of the alloy above the crystallization temperature. Microstructural examinations revealed that nickel solid solution and CoWB phase precipitate upon annealing. Fully crystallized composite samples contain about 60 vol% nickel solid solution and 40 vol% CoWB phase. Microhardness of the amorphous alloy is determined to be 1168 HV. Composites having microhardness values higher than 1400 HV are obtained. Improvement in microhardness is caused by the formation of CoWB phase, whose microhardness is determined to be between 4500 and 5000 HV. This is the first composite reinforced by CoWB phase. Indentation fracture toughness of the composite having peak hardness ranges between 2.44 and 4.67MPam. It is found that further annealing results in slightly lower microhardness but higher indentation fracture toughness, which is between 3.55 and 6.45MPam. The effects of microstructure on microhardness and indentation fracture toughness of the composites are discussed.
•The first composite reinforced by the ultra-hard CoWB phase is developed.•The fully crystallized composites contain about 60 vol% FCC-Ni and 40 vol% CoWB.•Composites having microhardness values higher than 1400 HV are obtained.•The microhardness of CoWB phase is determined to be between 4500 and 5000 HV.•Increasing boron content is expected to improve both microhardness and toughness.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2020.140479</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-5093 |
ispartof | Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2021-01, Vol.803, p.140479, Article 140479 |
issn | 0921-5093 1873-4936 |
language | eng |
recordid | cdi_proquest_journals_2493861486 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Amorphous alloys Amorphous materials Annealing Composite Composite materials CoWB phase Crystallization Devitrification Fracture toughness Indentation Mechanical properties Metallic glass Metallic glasses Microhardness Microstructure Nickel Precipitation hardening Solid solutions |
title | A Ni–CoWB composite developed by devitrification of Ni–Co–W–B bulk metallic glass |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A07%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Ni%E2%80%93CoWB%20composite%20developed%20by%20devitrification%20of%20Ni%E2%80%93Co%E2%80%93W%E2%80%93B%20bulk%20metallic%20glass&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Hitit,%20Aytekin&rft.date=2021-01-28&rft.volume=803&rft.spage=140479&rft.pages=140479-&rft.artnum=140479&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2020.140479&rft_dat=%3Cproquest_cross%3E2493861486%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c328t-268bba6775205f85a890778a21b6fbd59e1342d50c7eb54aef8a0c8f00c738833%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2493861486&rft_id=info:pmid/&rfr_iscdi=true |