Loading…

A Ni–CoWB composite developed by devitrification of Ni–Co–W–B bulk metallic glass

The effects of annealing on microstructure and mechanical properties of Ni36.3Co25W23.7B15 bulk metallic glass are investigated. Composite samples were produced by annealing amorphous samples of the alloy above the crystallization temperature. Microstructural examinations revealed that nickel solid...

Full description

Saved in:
Bibliographic Details
Published in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2021-01, Vol.803, p.140479, Article 140479
Main Authors: Hitit, Aytekin, Yazici, Ziya Ozgur, Öztürk, Pelin, Şahin, Hakan, Aşgın, Ahmet Malik, Hitit, Burcu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c328t-268bba6775205f85a890778a21b6fbd59e1342d50c7eb54aef8a0c8f00c738833
cites cdi_FETCH-LOGICAL-c328t-268bba6775205f85a890778a21b6fbd59e1342d50c7eb54aef8a0c8f00c738833
container_end_page
container_issue
container_start_page 140479
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 803
creator Hitit, Aytekin
Yazici, Ziya Ozgur
Öztürk, Pelin
Şahin, Hakan
Aşgın, Ahmet Malik
Hitit, Burcu
description The effects of annealing on microstructure and mechanical properties of Ni36.3Co25W23.7B15 bulk metallic glass are investigated. Composite samples were produced by annealing amorphous samples of the alloy above the crystallization temperature. Microstructural examinations revealed that nickel solid solution and CoWB phase precipitate upon annealing. Fully crystallized composite samples contain about 60 vol% nickel solid solution and 40 vol% CoWB phase. Microhardness of the amorphous alloy is determined to be 1168 HV. Composites having microhardness values higher than 1400 HV are obtained. Improvement in microhardness is caused by the formation of CoWB phase, whose microhardness is determined to be between 4500 and 5000 HV. This is the first composite reinforced by CoWB phase. Indentation fracture toughness of the composite having peak hardness ranges between 2.44 and 4.67MPam. It is found that further annealing results in slightly lower microhardness but higher indentation fracture toughness, which is between 3.55 and 6.45MPam. The effects of microstructure on microhardness and indentation fracture toughness of the composites are discussed. •The first composite reinforced by the ultra-hard CoWB phase is developed.•The fully crystallized composites contain about 60 vol% FCC-Ni and 40 vol% CoWB.•Composites having microhardness values higher than 1400 HV are obtained.•The microhardness of CoWB phase is determined to be between 4500 and 5000 HV.•Increasing boron content is expected to improve both microhardness and toughness.
doi_str_mv 10.1016/j.msea.2020.140479
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2493861486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509320315422</els_id><sourcerecordid>2493861486</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-268bba6775205f85a890778a21b6fbd59e1342d50c7eb54aef8a0c8f00c738833</originalsourceid><addsrcrecordid>eNp9UMlOwzAQtRBIlMIPcLLEOcVLFkfiUio2qYILqOJkOc4YOSR1sdNKvfEP_CFfgqPAlcPMaJ7em-UhdE7JjBKaXzazLoCaMcIikJK0KA_QhIqCJ2nJ80M0ISWjSUZKfoxOQmgIIZGWTdDrHD_a78-vhVtdY-26jQu2B1zDDlq3gRpX-6GxvbfGatVbt8bO_GliWsW4xtW2fccd9KptrcZvrQrhFB0Z1QY4-61T9HJ787y4T5ZPdw-L-TLRnIk-YbmoKpUXRcZIZkSmREmKQihGq9xUdVYC5SmrM6ILqLJUgRGKaGFIBLgQnE_RxTh3493HFkIvG7f167hSsvi8yGkq8shiI0t7F4IHIzfedsrvJSVysFA2crBQDhbK0cIouhpFEO_fWfAyaAtrDbX1oHtZO_uf_Ad63nx9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2493861486</pqid></control><display><type>article</type><title>A Ni–CoWB composite developed by devitrification of Ni–Co–W–B bulk metallic glass</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Hitit, Aytekin ; Yazici, Ziya Ozgur ; Öztürk, Pelin ; Şahin, Hakan ; Aşgın, Ahmet Malik ; Hitit, Burcu</creator><creatorcontrib>Hitit, Aytekin ; Yazici, Ziya Ozgur ; Öztürk, Pelin ; Şahin, Hakan ; Aşgın, Ahmet Malik ; Hitit, Burcu</creatorcontrib><description>The effects of annealing on microstructure and mechanical properties of Ni36.3Co25W23.7B15 bulk metallic glass are investigated. Composite samples were produced by annealing amorphous samples of the alloy above the crystallization temperature. Microstructural examinations revealed that nickel solid solution and CoWB phase precipitate upon annealing. Fully crystallized composite samples contain about 60 vol% nickel solid solution and 40 vol% CoWB phase. Microhardness of the amorphous alloy is determined to be 1168 HV. Composites having microhardness values higher than 1400 HV are obtained. Improvement in microhardness is caused by the formation of CoWB phase, whose microhardness is determined to be between 4500 and 5000 HV. This is the first composite reinforced by CoWB phase. Indentation fracture toughness of the composite having peak hardness ranges between 2.44 and 4.67MPam. It is found that further annealing results in slightly lower microhardness but higher indentation fracture toughness, which is between 3.55 and 6.45MPam. The effects of microstructure on microhardness and indentation fracture toughness of the composites are discussed. •The first composite reinforced by the ultra-hard CoWB phase is developed.•The fully crystallized composites contain about 60 vol% FCC-Ni and 40 vol% CoWB.•Composites having microhardness values higher than 1400 HV are obtained.•The microhardness of CoWB phase is determined to be between 4500 and 5000 HV.•Increasing boron content is expected to improve both microhardness and toughness.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2020.140479</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Amorphous alloys ; Amorphous materials ; Annealing ; Composite ; Composite materials ; CoWB phase ; Crystallization ; Devitrification ; Fracture toughness ; Indentation ; Mechanical properties ; Metallic glass ; Metallic glasses ; Microhardness ; Microstructure ; Nickel ; Precipitation hardening ; Solid solutions</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 2021-01, Vol.803, p.140479, Article 140479</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jan 28, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-268bba6775205f85a890778a21b6fbd59e1342d50c7eb54aef8a0c8f00c738833</citedby><cites>FETCH-LOGICAL-c328t-268bba6775205f85a890778a21b6fbd59e1342d50c7eb54aef8a0c8f00c738833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hitit, Aytekin</creatorcontrib><creatorcontrib>Yazici, Ziya Ozgur</creatorcontrib><creatorcontrib>Öztürk, Pelin</creatorcontrib><creatorcontrib>Şahin, Hakan</creatorcontrib><creatorcontrib>Aşgın, Ahmet Malik</creatorcontrib><creatorcontrib>Hitit, Burcu</creatorcontrib><title>A Ni–CoWB composite developed by devitrification of Ni–Co–W–B bulk metallic glass</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>The effects of annealing on microstructure and mechanical properties of Ni36.3Co25W23.7B15 bulk metallic glass are investigated. Composite samples were produced by annealing amorphous samples of the alloy above the crystallization temperature. Microstructural examinations revealed that nickel solid solution and CoWB phase precipitate upon annealing. Fully crystallized composite samples contain about 60 vol% nickel solid solution and 40 vol% CoWB phase. Microhardness of the amorphous alloy is determined to be 1168 HV. Composites having microhardness values higher than 1400 HV are obtained. Improvement in microhardness is caused by the formation of CoWB phase, whose microhardness is determined to be between 4500 and 5000 HV. This is the first composite reinforced by CoWB phase. Indentation fracture toughness of the composite having peak hardness ranges between 2.44 and 4.67MPam. It is found that further annealing results in slightly lower microhardness but higher indentation fracture toughness, which is between 3.55 and 6.45MPam. The effects of microstructure on microhardness and indentation fracture toughness of the composites are discussed. •The first composite reinforced by the ultra-hard CoWB phase is developed.•The fully crystallized composites contain about 60 vol% FCC-Ni and 40 vol% CoWB.•Composites having microhardness values higher than 1400 HV are obtained.•The microhardness of CoWB phase is determined to be between 4500 and 5000 HV.•Increasing boron content is expected to improve both microhardness and toughness.</description><subject>Amorphous alloys</subject><subject>Amorphous materials</subject><subject>Annealing</subject><subject>Composite</subject><subject>Composite materials</subject><subject>CoWB phase</subject><subject>Crystallization</subject><subject>Devitrification</subject><subject>Fracture toughness</subject><subject>Indentation</subject><subject>Mechanical properties</subject><subject>Metallic glass</subject><subject>Metallic glasses</subject><subject>Microhardness</subject><subject>Microstructure</subject><subject>Nickel</subject><subject>Precipitation hardening</subject><subject>Solid solutions</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UMlOwzAQtRBIlMIPcLLEOcVLFkfiUio2qYILqOJkOc4YOSR1sdNKvfEP_CFfgqPAlcPMaJ7em-UhdE7JjBKaXzazLoCaMcIikJK0KA_QhIqCJ2nJ80M0ISWjSUZKfoxOQmgIIZGWTdDrHD_a78-vhVtdY-26jQu2B1zDDlq3gRpX-6GxvbfGatVbt8bO_GliWsW4xtW2fccd9KptrcZvrQrhFB0Z1QY4-61T9HJ787y4T5ZPdw-L-TLRnIk-YbmoKpUXRcZIZkSmREmKQihGq9xUdVYC5SmrM6ILqLJUgRGKaGFIBLgQnE_RxTh3493HFkIvG7f167hSsvi8yGkq8shiI0t7F4IHIzfedsrvJSVysFA2crBQDhbK0cIouhpFEO_fWfAyaAtrDbX1oHtZO_uf_Ad63nx9</recordid><startdate>20210128</startdate><enddate>20210128</enddate><creator>Hitit, Aytekin</creator><creator>Yazici, Ziya Ozgur</creator><creator>Öztürk, Pelin</creator><creator>Şahin, Hakan</creator><creator>Aşgın, Ahmet Malik</creator><creator>Hitit, Burcu</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20210128</creationdate><title>A Ni–CoWB composite developed by devitrification of Ni–Co–W–B bulk metallic glass</title><author>Hitit, Aytekin ; Yazici, Ziya Ozgur ; Öztürk, Pelin ; Şahin, Hakan ; Aşgın, Ahmet Malik ; Hitit, Burcu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-268bba6775205f85a890778a21b6fbd59e1342d50c7eb54aef8a0c8f00c738833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amorphous alloys</topic><topic>Amorphous materials</topic><topic>Annealing</topic><topic>Composite</topic><topic>Composite materials</topic><topic>CoWB phase</topic><topic>Crystallization</topic><topic>Devitrification</topic><topic>Fracture toughness</topic><topic>Indentation</topic><topic>Mechanical properties</topic><topic>Metallic glass</topic><topic>Metallic glasses</topic><topic>Microhardness</topic><topic>Microstructure</topic><topic>Nickel</topic><topic>Precipitation hardening</topic><topic>Solid solutions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hitit, Aytekin</creatorcontrib><creatorcontrib>Yazici, Ziya Ozgur</creatorcontrib><creatorcontrib>Öztürk, Pelin</creatorcontrib><creatorcontrib>Şahin, Hakan</creatorcontrib><creatorcontrib>Aşgın, Ahmet Malik</creatorcontrib><creatorcontrib>Hitit, Burcu</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hitit, Aytekin</au><au>Yazici, Ziya Ozgur</au><au>Öztürk, Pelin</au><au>Şahin, Hakan</au><au>Aşgın, Ahmet Malik</au><au>Hitit, Burcu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Ni–CoWB composite developed by devitrification of Ni–Co–W–B bulk metallic glass</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2021-01-28</date><risdate>2021</risdate><volume>803</volume><spage>140479</spage><pages>140479-</pages><artnum>140479</artnum><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>The effects of annealing on microstructure and mechanical properties of Ni36.3Co25W23.7B15 bulk metallic glass are investigated. Composite samples were produced by annealing amorphous samples of the alloy above the crystallization temperature. Microstructural examinations revealed that nickel solid solution and CoWB phase precipitate upon annealing. Fully crystallized composite samples contain about 60 vol% nickel solid solution and 40 vol% CoWB phase. Microhardness of the amorphous alloy is determined to be 1168 HV. Composites having microhardness values higher than 1400 HV are obtained. Improvement in microhardness is caused by the formation of CoWB phase, whose microhardness is determined to be between 4500 and 5000 HV. This is the first composite reinforced by CoWB phase. Indentation fracture toughness of the composite having peak hardness ranges between 2.44 and 4.67MPam. It is found that further annealing results in slightly lower microhardness but higher indentation fracture toughness, which is between 3.55 and 6.45MPam. The effects of microstructure on microhardness and indentation fracture toughness of the composites are discussed. •The first composite reinforced by the ultra-hard CoWB phase is developed.•The fully crystallized composites contain about 60 vol% FCC-Ni and 40 vol% CoWB.•Composites having microhardness values higher than 1400 HV are obtained.•The microhardness of CoWB phase is determined to be between 4500 and 5000 HV.•Increasing boron content is expected to improve both microhardness and toughness.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2020.140479</doi></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2021-01, Vol.803, p.140479, Article 140479
issn 0921-5093
1873-4936
language eng
recordid cdi_proquest_journals_2493861486
source ScienceDirect Freedom Collection 2022-2024
subjects Amorphous alloys
Amorphous materials
Annealing
Composite
Composite materials
CoWB phase
Crystallization
Devitrification
Fracture toughness
Indentation
Mechanical properties
Metallic glass
Metallic glasses
Microhardness
Microstructure
Nickel
Precipitation hardening
Solid solutions
title A Ni–CoWB composite developed by devitrification of Ni–Co–W–B bulk metallic glass
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A07%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Ni%E2%80%93CoWB%20composite%20developed%20by%20devitrification%20of%20Ni%E2%80%93Co%E2%80%93W%E2%80%93B%20bulk%20metallic%20glass&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Hitit,%20Aytekin&rft.date=2021-01-28&rft.volume=803&rft.spage=140479&rft.pages=140479-&rft.artnum=140479&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2020.140479&rft_dat=%3Cproquest_cross%3E2493861486%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c328t-268bba6775205f85a890778a21b6fbd59e1342d50c7eb54aef8a0c8f00c738833%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2493861486&rft_id=info:pmid/&rfr_iscdi=true