Loading…

Highly selective room temperature ammonia sensors based on ZnO nanostructures decorated with graphene quantum dots (GQDs)

•ZnO nanostructures combined with GQDs enhance the sensor response and selectivity toward ammonia at room temperature.•Sensor response enhancement depend on the GQDs’ amount.•Humidity hugely improve the sensor response toward ammonia.•COOH group creation is due to the bonding between the oxygen in t...

Full description

Saved in:
Bibliographic Details
Published in:Sensors and actuators. B, Chemical Chemical, 2021-01, Vol.326, p.128983, Article 128983
Main Authors: Wongrat, Ekasiddh, Nuengnit, Thiranuch, Panyathip, Rangsan, Chanlek, Narong, Hongsith, Niyom, Choopun, Supab
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c325t-d8d334b6c4c7d315e81e91ea0677eab7a9814ee7a5a79753c7da42859e2650e13
cites cdi_FETCH-LOGICAL-c325t-d8d334b6c4c7d315e81e91ea0677eab7a9814ee7a5a79753c7da42859e2650e13
container_end_page
container_issue
container_start_page 128983
container_title Sensors and actuators. B, Chemical
container_volume 326
creator Wongrat, Ekasiddh
Nuengnit, Thiranuch
Panyathip, Rangsan
Chanlek, Narong
Hongsith, Niyom
Choopun, Supab
description •ZnO nanostructures combined with GQDs enhance the sensor response and selectivity toward ammonia at room temperature.•Sensor response enhancement depend on the GQDs’ amount.•Humidity hugely improve the sensor response toward ammonia.•COOH group creation is due to the bonding between the oxygen in the ZnO and the OH stretching of GQDs.•Ammonia sensor improvement is due to more oxygen-containing groups of COOH in ZnO:GQDs heterojunction. This paper presents a highly selective ammonia sensor based on ZnO nanostructures combined with graphene quantum dots (GQDs). Novel graphene quantum dots (GQDs) have an average lateral size distribution of 2.6 nm. Various amounts of GQDs were combined with the ZnO nanostructure surfaces. Prior to the ZnO:GQDs investigation, field emission scanning electron microscopy (FE-SEM), energy-dispersive spectroscopy (EDS), Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) were used to intensively characterize the surface morphologies, existence of functional groups, and chemical compositions. ZnO:GQD heterojunctions are crucial candidate materials due to their highly selective response to ammonia (NH3) vapor. The ammonia sensing characteristics of bare ZnO and ZnO:GQDs sensors at room temperature were systematically investigated via exposure to acetone and ethanol vapor. The ammonia sensing results show that ZnO:GQDs sensors with a volume of 15 μL have optimum sensor responses at an ammonia concentration of 1000 ppm with a value of 6047. The ammonia sensing properties of ZnO:GQDs sensors are due to the GQDs’ carboxyl and hydroxyl groups, which produce more oxygen-containing groups leading to a high H+ molecule density. This further contributes to their highly responsive and selective performance for sensing ammonia at room temperature.
doi_str_mv 10.1016/j.snb.2020.128983
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2493861727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925400520313307</els_id><sourcerecordid>2493861727</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-d8d334b6c4c7d315e81e91ea0677eab7a9814ee7a5a79753c7da42859e2650e13</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wFvAix625mN3s4snqdoKhSLoxUvIZqdtSjdpk2yl_96UevY0DPO8M8OD0C0lI0po-bgeBduMGGGpZ1Vd8TM0oJXgGSdCnKMBqVmR5YQUl-gqhDUhJOclGaDD1CxXmwMOsAEdzR6wd67DEboteBV7D1h1nbNGJcQG5wNuVIAWO4u_7RxbZV2IvtdHNOAWtEuxNP8xcYWXXm1XYAHvemVj3-HWxYDvJx8v4eEaXSzUJsDNXx2ir7fXz_E0m80n7-PnWaY5K2LWVi3neVPqXIuW0wIqCjUFRUohQDVC1RXNAYQqlKhFwROlclYVNbCyIED5EN2d9m692_UQoly73tt0UrK85lVJBROJoidKexeCh4XcetMpf5CUyKNhuZbJsDwalifDKfN0ykB6f2_Ay6ANWA2t8UmmbJ35J_0LPFeFQg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2493861727</pqid></control><display><type>article</type><title>Highly selective room temperature ammonia sensors based on ZnO nanostructures decorated with graphene quantum dots (GQDs)</title><source>Elsevier</source><creator>Wongrat, Ekasiddh ; Nuengnit, Thiranuch ; Panyathip, Rangsan ; Chanlek, Narong ; Hongsith, Niyom ; Choopun, Supab</creator><creatorcontrib>Wongrat, Ekasiddh ; Nuengnit, Thiranuch ; Panyathip, Rangsan ; Chanlek, Narong ; Hongsith, Niyom ; Choopun, Supab</creatorcontrib><description>•ZnO nanostructures combined with GQDs enhance the sensor response and selectivity toward ammonia at room temperature.•Sensor response enhancement depend on the GQDs’ amount.•Humidity hugely improve the sensor response toward ammonia.•COOH group creation is due to the bonding between the oxygen in the ZnO and the OH stretching of GQDs.•Ammonia sensor improvement is due to more oxygen-containing groups of COOH in ZnO:GQDs heterojunction. This paper presents a highly selective ammonia sensor based on ZnO nanostructures combined with graphene quantum dots (GQDs). Novel graphene quantum dots (GQDs) have an average lateral size distribution of 2.6 nm. Various amounts of GQDs were combined with the ZnO nanostructure surfaces. Prior to the ZnO:GQDs investigation, field emission scanning electron microscopy (FE-SEM), energy-dispersive spectroscopy (EDS), Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) were used to intensively characterize the surface morphologies, existence of functional groups, and chemical compositions. ZnO:GQD heterojunctions are crucial candidate materials due to their highly selective response to ammonia (NH3) vapor. The ammonia sensing characteristics of bare ZnO and ZnO:GQDs sensors at room temperature were systematically investigated via exposure to acetone and ethanol vapor. The ammonia sensing results show that ZnO:GQDs sensors with a volume of 15 μL have optimum sensor responses at an ammonia concentration of 1000 ppm with a value of 6047. The ammonia sensing properties of ZnO:GQDs sensors are due to the GQDs’ carboxyl and hydroxyl groups, which produce more oxygen-containing groups leading to a high H+ molecule density. This further contributes to their highly responsive and selective performance for sensing ammonia at room temperature.</description><identifier>ISSN: 0925-4005</identifier><identifier>EISSN: 1873-3077</identifier><identifier>DOI: 10.1016/j.snb.2020.128983</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Acetone ; Ammonia ; Ammonia sensor ; Chemical composition ; Electron microscopy ; Emission analysis ; Ethanol ; Field emission microscopy ; Fourier transforms ; Functional groups ; GQDs ; Graphene ; Heterojunctions ; Hydroxyl groups ; Materials selection ; Microscopy ; Morphology ; Nanostructure ; p-n heterojunction ; Photoelectrons ; Quantum dots ; Room temperature ; Sensors ; Size distribution ; Spectrum analysis ; X ray photoelectron spectroscopy ; Zinc oxide ; ZnO</subject><ispartof>Sensors and actuators. B, Chemical, 2021-01, Vol.326, p.128983, Article 128983</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Jan 1, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-d8d334b6c4c7d315e81e91ea0677eab7a9814ee7a5a79753c7da42859e2650e13</citedby><cites>FETCH-LOGICAL-c325t-d8d334b6c4c7d315e81e91ea0677eab7a9814ee7a5a79753c7da42859e2650e13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wongrat, Ekasiddh</creatorcontrib><creatorcontrib>Nuengnit, Thiranuch</creatorcontrib><creatorcontrib>Panyathip, Rangsan</creatorcontrib><creatorcontrib>Chanlek, Narong</creatorcontrib><creatorcontrib>Hongsith, Niyom</creatorcontrib><creatorcontrib>Choopun, Supab</creatorcontrib><title>Highly selective room temperature ammonia sensors based on ZnO nanostructures decorated with graphene quantum dots (GQDs)</title><title>Sensors and actuators. B, Chemical</title><description>•ZnO nanostructures combined with GQDs enhance the sensor response and selectivity toward ammonia at room temperature.•Sensor response enhancement depend on the GQDs’ amount.•Humidity hugely improve the sensor response toward ammonia.•COOH group creation is due to the bonding between the oxygen in the ZnO and the OH stretching of GQDs.•Ammonia sensor improvement is due to more oxygen-containing groups of COOH in ZnO:GQDs heterojunction. This paper presents a highly selective ammonia sensor based on ZnO nanostructures combined with graphene quantum dots (GQDs). Novel graphene quantum dots (GQDs) have an average lateral size distribution of 2.6 nm. Various amounts of GQDs were combined with the ZnO nanostructure surfaces. Prior to the ZnO:GQDs investigation, field emission scanning electron microscopy (FE-SEM), energy-dispersive spectroscopy (EDS), Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) were used to intensively characterize the surface morphologies, existence of functional groups, and chemical compositions. ZnO:GQD heterojunctions are crucial candidate materials due to their highly selective response to ammonia (NH3) vapor. The ammonia sensing characteristics of bare ZnO and ZnO:GQDs sensors at room temperature were systematically investigated via exposure to acetone and ethanol vapor. The ammonia sensing results show that ZnO:GQDs sensors with a volume of 15 μL have optimum sensor responses at an ammonia concentration of 1000 ppm with a value of 6047. The ammonia sensing properties of ZnO:GQDs sensors are due to the GQDs’ carboxyl and hydroxyl groups, which produce more oxygen-containing groups leading to a high H+ molecule density. This further contributes to their highly responsive and selective performance for sensing ammonia at room temperature.</description><subject>Acetone</subject><subject>Ammonia</subject><subject>Ammonia sensor</subject><subject>Chemical composition</subject><subject>Electron microscopy</subject><subject>Emission analysis</subject><subject>Ethanol</subject><subject>Field emission microscopy</subject><subject>Fourier transforms</subject><subject>Functional groups</subject><subject>GQDs</subject><subject>Graphene</subject><subject>Heterojunctions</subject><subject>Hydroxyl groups</subject><subject>Materials selection</subject><subject>Microscopy</subject><subject>Morphology</subject><subject>Nanostructure</subject><subject>p-n heterojunction</subject><subject>Photoelectrons</subject><subject>Quantum dots</subject><subject>Room temperature</subject><subject>Sensors</subject><subject>Size distribution</subject><subject>Spectrum analysis</subject><subject>X ray photoelectron spectroscopy</subject><subject>Zinc oxide</subject><subject>ZnO</subject><issn>0925-4005</issn><issn>1873-3077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_wFvAix625mN3s4snqdoKhSLoxUvIZqdtSjdpk2yl_96UevY0DPO8M8OD0C0lI0po-bgeBduMGGGpZ1Vd8TM0oJXgGSdCnKMBqVmR5YQUl-gqhDUhJOclGaDD1CxXmwMOsAEdzR6wd67DEboteBV7D1h1nbNGJcQG5wNuVIAWO4u_7RxbZV2IvtdHNOAWtEuxNP8xcYWXXm1XYAHvemVj3-HWxYDvJx8v4eEaXSzUJsDNXx2ir7fXz_E0m80n7-PnWaY5K2LWVi3neVPqXIuW0wIqCjUFRUohQDVC1RXNAYQqlKhFwROlclYVNbCyIED5EN2d9m692_UQoly73tt0UrK85lVJBROJoidKexeCh4XcetMpf5CUyKNhuZbJsDwalifDKfN0ykB6f2_Ay6ANWA2t8UmmbJ35J_0LPFeFQg</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Wongrat, Ekasiddh</creator><creator>Nuengnit, Thiranuch</creator><creator>Panyathip, Rangsan</creator><creator>Chanlek, Narong</creator><creator>Hongsith, Niyom</creator><creator>Choopun, Supab</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20210101</creationdate><title>Highly selective room temperature ammonia sensors based on ZnO nanostructures decorated with graphene quantum dots (GQDs)</title><author>Wongrat, Ekasiddh ; Nuengnit, Thiranuch ; Panyathip, Rangsan ; Chanlek, Narong ; Hongsith, Niyom ; Choopun, Supab</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-d8d334b6c4c7d315e81e91ea0677eab7a9814ee7a5a79753c7da42859e2650e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acetone</topic><topic>Ammonia</topic><topic>Ammonia sensor</topic><topic>Chemical composition</topic><topic>Electron microscopy</topic><topic>Emission analysis</topic><topic>Ethanol</topic><topic>Field emission microscopy</topic><topic>Fourier transforms</topic><topic>Functional groups</topic><topic>GQDs</topic><topic>Graphene</topic><topic>Heterojunctions</topic><topic>Hydroxyl groups</topic><topic>Materials selection</topic><topic>Microscopy</topic><topic>Morphology</topic><topic>Nanostructure</topic><topic>p-n heterojunction</topic><topic>Photoelectrons</topic><topic>Quantum dots</topic><topic>Room temperature</topic><topic>Sensors</topic><topic>Size distribution</topic><topic>Spectrum analysis</topic><topic>X ray photoelectron spectroscopy</topic><topic>Zinc oxide</topic><topic>ZnO</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wongrat, Ekasiddh</creatorcontrib><creatorcontrib>Nuengnit, Thiranuch</creatorcontrib><creatorcontrib>Panyathip, Rangsan</creatorcontrib><creatorcontrib>Chanlek, Narong</creatorcontrib><creatorcontrib>Hongsith, Niyom</creatorcontrib><creatorcontrib>Choopun, Supab</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sensors and actuators. B, Chemical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wongrat, Ekasiddh</au><au>Nuengnit, Thiranuch</au><au>Panyathip, Rangsan</au><au>Chanlek, Narong</au><au>Hongsith, Niyom</au><au>Choopun, Supab</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly selective room temperature ammonia sensors based on ZnO nanostructures decorated with graphene quantum dots (GQDs)</atitle><jtitle>Sensors and actuators. B, Chemical</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>326</volume><spage>128983</spage><pages>128983-</pages><artnum>128983</artnum><issn>0925-4005</issn><eissn>1873-3077</eissn><abstract>•ZnO nanostructures combined with GQDs enhance the sensor response and selectivity toward ammonia at room temperature.•Sensor response enhancement depend on the GQDs’ amount.•Humidity hugely improve the sensor response toward ammonia.•COOH group creation is due to the bonding between the oxygen in the ZnO and the OH stretching of GQDs.•Ammonia sensor improvement is due to more oxygen-containing groups of COOH in ZnO:GQDs heterojunction. This paper presents a highly selective ammonia sensor based on ZnO nanostructures combined with graphene quantum dots (GQDs). Novel graphene quantum dots (GQDs) have an average lateral size distribution of 2.6 nm. Various amounts of GQDs were combined with the ZnO nanostructure surfaces. Prior to the ZnO:GQDs investigation, field emission scanning electron microscopy (FE-SEM), energy-dispersive spectroscopy (EDS), Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) were used to intensively characterize the surface morphologies, existence of functional groups, and chemical compositions. ZnO:GQD heterojunctions are crucial candidate materials due to their highly selective response to ammonia (NH3) vapor. The ammonia sensing characteristics of bare ZnO and ZnO:GQDs sensors at room temperature were systematically investigated via exposure to acetone and ethanol vapor. The ammonia sensing results show that ZnO:GQDs sensors with a volume of 15 μL have optimum sensor responses at an ammonia concentration of 1000 ppm with a value of 6047. The ammonia sensing properties of ZnO:GQDs sensors are due to the GQDs’ carboxyl and hydroxyl groups, which produce more oxygen-containing groups leading to a high H+ molecule density. This further contributes to their highly responsive and selective performance for sensing ammonia at room temperature.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.snb.2020.128983</doi></addata></record>
fulltext fulltext
identifier ISSN: 0925-4005
ispartof Sensors and actuators. B, Chemical, 2021-01, Vol.326, p.128983, Article 128983
issn 0925-4005
1873-3077
language eng
recordid cdi_proquest_journals_2493861727
source Elsevier
subjects Acetone
Ammonia
Ammonia sensor
Chemical composition
Electron microscopy
Emission analysis
Ethanol
Field emission microscopy
Fourier transforms
Functional groups
GQDs
Graphene
Heterojunctions
Hydroxyl groups
Materials selection
Microscopy
Morphology
Nanostructure
p-n heterojunction
Photoelectrons
Quantum dots
Room temperature
Sensors
Size distribution
Spectrum analysis
X ray photoelectron spectroscopy
Zinc oxide
ZnO
title Highly selective room temperature ammonia sensors based on ZnO nanostructures decorated with graphene quantum dots (GQDs)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T04%3A42%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20selective%20room%20temperature%20ammonia%20sensors%20based%20on%20ZnO%20nanostructures%20decorated%20with%20graphene%20quantum%20dots%20(GQDs)&rft.jtitle=Sensors%20and%20actuators.%20B,%20Chemical&rft.au=Wongrat,%20Ekasiddh&rft.date=2021-01-01&rft.volume=326&rft.spage=128983&rft.pages=128983-&rft.artnum=128983&rft.issn=0925-4005&rft.eissn=1873-3077&rft_id=info:doi/10.1016/j.snb.2020.128983&rft_dat=%3Cproquest_cross%3E2493861727%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c325t-d8d334b6c4c7d315e81e91ea0677eab7a9814ee7a5a79753c7da42859e2650e13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2493861727&rft_id=info:pmid/&rfr_iscdi=true