Loading…
Oxygen vacancy enhanced Co3O4/ZnO nanocomposite with small sized and loose structure for sensitive electroanalysis of Hg(II) in subsidence area water
[Display omitted] •Simple fabrication of small sized Co3O4/ZnO nanocomposite with oxygen vacancy.•Surface abundant oxygen vacancy enhanced the sensitivity of electroanalysis.•Co3O4/ZnO achieves high sensitivity (504.74 μA cm−2 μM-1) for Hg(II) detection.•The sensor exhibits high anti-interference an...
Saved in:
Published in: | Sensors and actuators. B, Chemical Chemical, 2021-01, Vol.326, p.128967, Article 128967 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c325t-5a02afd03c80d47c7f21b8f5f6f6cbbc96ac3b447b636c77347e1068f817069f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c325t-5a02afd03c80d47c7f21b8f5f6f6cbbc96ac3b447b636c77347e1068f817069f3 |
container_end_page | |
container_issue | |
container_start_page | 128967 |
container_title | Sensors and actuators. B, Chemical |
container_volume | 326 |
creator | Cheng, Xing-Liang Xu, Qian-Qian Li, Shan-Shan Li, Jia Zhou, Yang Zhang, Yongxing Li, Suwen |
description | [Display omitted]
•Simple fabrication of small sized Co3O4/ZnO nanocomposite with oxygen vacancy.•Surface abundant oxygen vacancy enhanced the sensitivity of electroanalysis.•Co3O4/ZnO achieves high sensitivity (504.74 μA cm−2 μM-1) for Hg(II) detection.•The sensor exhibits high anti-interference and robust stability.
Metal-oxide based nanocomposites have superior benefits to fabricate sensing interface for electroanalysis of heavy metal ions (HMIs) due to the introduction of various advantages (i.e. environmentally friendly, low-cost and high activity) into one material. Herein, Co3O4/ZnO nanocomposite with small size (sub-40 nm) and abundant oxygen vacancy was successfully prepared through one-step hydrothermal synthesis and subsequent annealing treatment, as well as the engineering of Co-Zn molar ratio. Moreover, the loose structure of Co3O4/ZnO nanocomposite can effectively improve the exposure of active sites on surface and enhance mass transfer. As a result, the as-obtained Co3O4/ZnO sensor has an impressive performance with sensitivity of 504.74 μA μM-1 cm-2 for electroanalysis of Hg(II) by square wave anodic stripping voltammetry (SWASV). Otherwise, diverse detection performances of the product with different Co:Zn molar ratio are investigated, proving the superiority for constructing Co3O4/ZnO sensor with molar ratio of 2Co/Zn. In addition, the electroanalytical behavior of the proposed sensors toward Hg(II) in subsidence area water was also realized with considerable result. By designing multifunctional nanocomposite with bimetal oxide nanomaterials, this work will provide a novel strategy to gain nanocomposite with controlling morphology and enriching oxygen vacancies, which are expected to be excellent candidate electrode materials for electroanalysis. |
doi_str_mv | 10.1016/j.snb.2020.128967 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2493862008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925400520313149</els_id><sourcerecordid>2493862008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-5a02afd03c80d47c7f21b8f5f6f6cbbc96ac3b447b636c77347e1068f817069f3</originalsourceid><addsrcrecordid>eNp9kEGP0zAQhSMEEmXhB3CzxAUO6Y7txE7ECVXAVlqpF7hwsRxnvOsqtYsn6VL-B_8XV-XM6Wmk92befFX1lsOaA1e3-zXFYS1AlFl0vdLPqhXvtKwlaP28WkEv2roBaF9Wr4j2ANBIBavqz-7X-QEjO1lnozszjI9FcWSbJHfN7Y-4Y9HG5NLhmCjMyJ7C_MjoYKeJUfhdjDaObEqJkNGcFzcvGZlPmRHGEggnZDihm3Oy0U5nCsSSZ3cP77fbDyxERstAYcRyk9mMlj3ZGfPr6oW3E-Gbf3pTff_y-dvmrr7ffd1uPt3XTop2rlsLwvoRpOtgbLTTXvCh861XXrlhcL2yTg5NowclldNaNho5qM53XIPqvbyp3l33HnP6uSDNZp-WXHqSEU0vOyUAuuLiV5fLiSijN8ccDjafDQdzoW_2ptA3F_rmSr9kPl4zWOqfAmZDLly-HEMuNMyYwn_SfwF-B474</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2493862008</pqid></control><display><type>article</type><title>Oxygen vacancy enhanced Co3O4/ZnO nanocomposite with small sized and loose structure for sensitive electroanalysis of Hg(II) in subsidence area water</title><source>ScienceDirect Journals</source><creator>Cheng, Xing-Liang ; Xu, Qian-Qian ; Li, Shan-Shan ; Li, Jia ; Zhou, Yang ; Zhang, Yongxing ; Li, Suwen</creator><creatorcontrib>Cheng, Xing-Liang ; Xu, Qian-Qian ; Li, Shan-Shan ; Li, Jia ; Zhou, Yang ; Zhang, Yongxing ; Li, Suwen</creatorcontrib><description>[Display omitted]
•Simple fabrication of small sized Co3O4/ZnO nanocomposite with oxygen vacancy.•Surface abundant oxygen vacancy enhanced the sensitivity of electroanalysis.•Co3O4/ZnO achieves high sensitivity (504.74 μA cm−2 μM-1) for Hg(II) detection.•The sensor exhibits high anti-interference and robust stability.
Metal-oxide based nanocomposites have superior benefits to fabricate sensing interface for electroanalysis of heavy metal ions (HMIs) due to the introduction of various advantages (i.e. environmentally friendly, low-cost and high activity) into one material. Herein, Co3O4/ZnO nanocomposite with small size (sub-40 nm) and abundant oxygen vacancy was successfully prepared through one-step hydrothermal synthesis and subsequent annealing treatment, as well as the engineering of Co-Zn molar ratio. Moreover, the loose structure of Co3O4/ZnO nanocomposite can effectively improve the exposure of active sites on surface and enhance mass transfer. As a result, the as-obtained Co3O4/ZnO sensor has an impressive performance with sensitivity of 504.74 μA μM-1 cm-2 for electroanalysis of Hg(II) by square wave anodic stripping voltammetry (SWASV). Otherwise, diverse detection performances of the product with different Co:Zn molar ratio are investigated, proving the superiority for constructing Co3O4/ZnO sensor with molar ratio of 2Co/Zn. In addition, the electroanalytical behavior of the proposed sensors toward Hg(II) in subsidence area water was also realized with considerable result. By designing multifunctional nanocomposite with bimetal oxide nanomaterials, this work will provide a novel strategy to gain nanocomposite with controlling morphology and enriching oxygen vacancies, which are expected to be excellent candidate electrode materials for electroanalysis.</description><identifier>ISSN: 0925-4005</identifier><identifier>EISSN: 1873-3077</identifier><identifier>DOI: 10.1016/j.snb.2020.128967</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Adsorption ; Anodic stripping ; Bimetals ; Co3O4/ZnO nanocomposite ; Cobalt oxides ; Electroanalysis ; Electrode materials ; Electrolytic analysis ; Heavy metals ; Hg(II) ; Lattice vacancies ; Mass transfer ; Mercury compounds ; Metal oxides ; Morphology ; Nanocomposites ; Nanomaterials ; Oxygen enrichment ; Oxygen vacancy ; Square waves ; Subsidence ; Vacancies ; Zinc oxide</subject><ispartof>Sensors and actuators. B, Chemical, 2021-01, Vol.326, p.128967, Article 128967</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Jan 1, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-5a02afd03c80d47c7f21b8f5f6f6cbbc96ac3b447b636c77347e1068f817069f3</citedby><cites>FETCH-LOGICAL-c325t-5a02afd03c80d47c7f21b8f5f6f6cbbc96ac3b447b636c77347e1068f817069f3</cites><orcidid>0000-0003-4238-3268</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Cheng, Xing-Liang</creatorcontrib><creatorcontrib>Xu, Qian-Qian</creatorcontrib><creatorcontrib>Li, Shan-Shan</creatorcontrib><creatorcontrib>Li, Jia</creatorcontrib><creatorcontrib>Zhou, Yang</creatorcontrib><creatorcontrib>Zhang, Yongxing</creatorcontrib><creatorcontrib>Li, Suwen</creatorcontrib><title>Oxygen vacancy enhanced Co3O4/ZnO nanocomposite with small sized and loose structure for sensitive electroanalysis of Hg(II) in subsidence area water</title><title>Sensors and actuators. B, Chemical</title><description>[Display omitted]
•Simple fabrication of small sized Co3O4/ZnO nanocomposite with oxygen vacancy.•Surface abundant oxygen vacancy enhanced the sensitivity of electroanalysis.•Co3O4/ZnO achieves high sensitivity (504.74 μA cm−2 μM-1) for Hg(II) detection.•The sensor exhibits high anti-interference and robust stability.
Metal-oxide based nanocomposites have superior benefits to fabricate sensing interface for electroanalysis of heavy metal ions (HMIs) due to the introduction of various advantages (i.e. environmentally friendly, low-cost and high activity) into one material. Herein, Co3O4/ZnO nanocomposite with small size (sub-40 nm) and abundant oxygen vacancy was successfully prepared through one-step hydrothermal synthesis and subsequent annealing treatment, as well as the engineering of Co-Zn molar ratio. Moreover, the loose structure of Co3O4/ZnO nanocomposite can effectively improve the exposure of active sites on surface and enhance mass transfer. As a result, the as-obtained Co3O4/ZnO sensor has an impressive performance with sensitivity of 504.74 μA μM-1 cm-2 for electroanalysis of Hg(II) by square wave anodic stripping voltammetry (SWASV). Otherwise, diverse detection performances of the product with different Co:Zn molar ratio are investigated, proving the superiority for constructing Co3O4/ZnO sensor with molar ratio of 2Co/Zn. In addition, the electroanalytical behavior of the proposed sensors toward Hg(II) in subsidence area water was also realized with considerable result. By designing multifunctional nanocomposite with bimetal oxide nanomaterials, this work will provide a novel strategy to gain nanocomposite with controlling morphology and enriching oxygen vacancies, which are expected to be excellent candidate electrode materials for electroanalysis.</description><subject>Adsorption</subject><subject>Anodic stripping</subject><subject>Bimetals</subject><subject>Co3O4/ZnO nanocomposite</subject><subject>Cobalt oxides</subject><subject>Electroanalysis</subject><subject>Electrode materials</subject><subject>Electrolytic analysis</subject><subject>Heavy metals</subject><subject>Hg(II)</subject><subject>Lattice vacancies</subject><subject>Mass transfer</subject><subject>Mercury compounds</subject><subject>Metal oxides</subject><subject>Morphology</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Oxygen enrichment</subject><subject>Oxygen vacancy</subject><subject>Square waves</subject><subject>Subsidence</subject><subject>Vacancies</subject><subject>Zinc oxide</subject><issn>0925-4005</issn><issn>1873-3077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEGP0zAQhSMEEmXhB3CzxAUO6Y7txE7ECVXAVlqpF7hwsRxnvOsqtYsn6VL-B_8XV-XM6Wmk92befFX1lsOaA1e3-zXFYS1AlFl0vdLPqhXvtKwlaP28WkEv2roBaF9Wr4j2ANBIBavqz-7X-QEjO1lnozszjI9FcWSbJHfN7Y-4Y9HG5NLhmCjMyJ7C_MjoYKeJUfhdjDaObEqJkNGcFzcvGZlPmRHGEggnZDihm3Oy0U5nCsSSZ3cP77fbDyxERstAYcRyk9mMlj3ZGfPr6oW3E-Gbf3pTff_y-dvmrr7ffd1uPt3XTop2rlsLwvoRpOtgbLTTXvCh861XXrlhcL2yTg5NowclldNaNho5qM53XIPqvbyp3l33HnP6uSDNZp-WXHqSEU0vOyUAuuLiV5fLiSijN8ccDjafDQdzoW_2ptA3F_rmSr9kPl4zWOqfAmZDLly-HEMuNMyYwn_SfwF-B474</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Cheng, Xing-Liang</creator><creator>Xu, Qian-Qian</creator><creator>Li, Shan-Shan</creator><creator>Li, Jia</creator><creator>Zhou, Yang</creator><creator>Zhang, Yongxing</creator><creator>Li, Suwen</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4238-3268</orcidid></search><sort><creationdate>20210101</creationdate><title>Oxygen vacancy enhanced Co3O4/ZnO nanocomposite with small sized and loose structure for sensitive electroanalysis of Hg(II) in subsidence area water</title><author>Cheng, Xing-Liang ; Xu, Qian-Qian ; Li, Shan-Shan ; Li, Jia ; Zhou, Yang ; Zhang, Yongxing ; Li, Suwen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-5a02afd03c80d47c7f21b8f5f6f6cbbc96ac3b447b636c77347e1068f817069f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adsorption</topic><topic>Anodic stripping</topic><topic>Bimetals</topic><topic>Co3O4/ZnO nanocomposite</topic><topic>Cobalt oxides</topic><topic>Electroanalysis</topic><topic>Electrode materials</topic><topic>Electrolytic analysis</topic><topic>Heavy metals</topic><topic>Hg(II)</topic><topic>Lattice vacancies</topic><topic>Mass transfer</topic><topic>Mercury compounds</topic><topic>Metal oxides</topic><topic>Morphology</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Oxygen enrichment</topic><topic>Oxygen vacancy</topic><topic>Square waves</topic><topic>Subsidence</topic><topic>Vacancies</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Xing-Liang</creatorcontrib><creatorcontrib>Xu, Qian-Qian</creatorcontrib><creatorcontrib>Li, Shan-Shan</creatorcontrib><creatorcontrib>Li, Jia</creatorcontrib><creatorcontrib>Zhou, Yang</creatorcontrib><creatorcontrib>Zhang, Yongxing</creatorcontrib><creatorcontrib>Li, Suwen</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sensors and actuators. B, Chemical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Xing-Liang</au><au>Xu, Qian-Qian</au><au>Li, Shan-Shan</au><au>Li, Jia</au><au>Zhou, Yang</au><au>Zhang, Yongxing</au><au>Li, Suwen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxygen vacancy enhanced Co3O4/ZnO nanocomposite with small sized and loose structure for sensitive electroanalysis of Hg(II) in subsidence area water</atitle><jtitle>Sensors and actuators. B, Chemical</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>326</volume><spage>128967</spage><pages>128967-</pages><artnum>128967</artnum><issn>0925-4005</issn><eissn>1873-3077</eissn><abstract>[Display omitted]
•Simple fabrication of small sized Co3O4/ZnO nanocomposite with oxygen vacancy.•Surface abundant oxygen vacancy enhanced the sensitivity of electroanalysis.•Co3O4/ZnO achieves high sensitivity (504.74 μA cm−2 μM-1) for Hg(II) detection.•The sensor exhibits high anti-interference and robust stability.
Metal-oxide based nanocomposites have superior benefits to fabricate sensing interface for electroanalysis of heavy metal ions (HMIs) due to the introduction of various advantages (i.e. environmentally friendly, low-cost and high activity) into one material. Herein, Co3O4/ZnO nanocomposite with small size (sub-40 nm) and abundant oxygen vacancy was successfully prepared through one-step hydrothermal synthesis and subsequent annealing treatment, as well as the engineering of Co-Zn molar ratio. Moreover, the loose structure of Co3O4/ZnO nanocomposite can effectively improve the exposure of active sites on surface and enhance mass transfer. As a result, the as-obtained Co3O4/ZnO sensor has an impressive performance with sensitivity of 504.74 μA μM-1 cm-2 for electroanalysis of Hg(II) by square wave anodic stripping voltammetry (SWASV). Otherwise, diverse detection performances of the product with different Co:Zn molar ratio are investigated, proving the superiority for constructing Co3O4/ZnO sensor with molar ratio of 2Co/Zn. In addition, the electroanalytical behavior of the proposed sensors toward Hg(II) in subsidence area water was also realized with considerable result. By designing multifunctional nanocomposite with bimetal oxide nanomaterials, this work will provide a novel strategy to gain nanocomposite with controlling morphology and enriching oxygen vacancies, which are expected to be excellent candidate electrode materials for electroanalysis.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.snb.2020.128967</doi><orcidid>https://orcid.org/0000-0003-4238-3268</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-4005 |
ispartof | Sensors and actuators. B, Chemical, 2021-01, Vol.326, p.128967, Article 128967 |
issn | 0925-4005 1873-3077 |
language | eng |
recordid | cdi_proquest_journals_2493862008 |
source | ScienceDirect Journals |
subjects | Adsorption Anodic stripping Bimetals Co3O4/ZnO nanocomposite Cobalt oxides Electroanalysis Electrode materials Electrolytic analysis Heavy metals Hg(II) Lattice vacancies Mass transfer Mercury compounds Metal oxides Morphology Nanocomposites Nanomaterials Oxygen enrichment Oxygen vacancy Square waves Subsidence Vacancies Zinc oxide |
title | Oxygen vacancy enhanced Co3O4/ZnO nanocomposite with small sized and loose structure for sensitive electroanalysis of Hg(II) in subsidence area water |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T22%3A43%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxygen%20vacancy%20enhanced%20Co3O4/ZnO%20nanocomposite%20with%20small%20sized%20and%20loose%20structure%20for%20sensitive%20electroanalysis%20of%20Hg(II)%20in%20subsidence%20area%20water&rft.jtitle=Sensors%20and%20actuators.%20B,%20Chemical&rft.au=Cheng,%20Xing-Liang&rft.date=2021-01-01&rft.volume=326&rft.spage=128967&rft.pages=128967-&rft.artnum=128967&rft.issn=0925-4005&rft.eissn=1873-3077&rft_id=info:doi/10.1016/j.snb.2020.128967&rft_dat=%3Cproquest_cross%3E2493862008%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c325t-5a02afd03c80d47c7f21b8f5f6f6cbbc96ac3b447b636c77347e1068f817069f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2493862008&rft_id=info:pmid/&rfr_iscdi=true |