Loading…

Optimization of multibeam klystron double gap cavities loaded by metal rods

In this paper, the results of numerical investigation of a metal photonic band gap cavity are presented. The investigated resonator is dual‐gap and is considered as an intermediate for the K‐band multibeam klystron. A working mode is a 2n mode with a frequency of 24.15 GHz. Electrodynamic characteri...

Full description

Saved in:
Bibliographic Details
Published in:Microwave and optical technology letters 2021-04, Vol.63 (4), p.1035-1041
Main Authors: Muchkaev, V. Yu, Tsarev, V. A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2574-ecce517382837b0a86a9ce30f4acb60c05334469edbf7d327660f9ed06fd78ba3
container_end_page 1041
container_issue 4
container_start_page 1035
container_title Microwave and optical technology letters
container_volume 63
creator Muchkaev, V. Yu
Tsarev, V. A.
description In this paper, the results of numerical investigation of a metal photonic band gap cavity are presented. The investigated resonator is dual‐gap and is considered as an intermediate for the K‐band multibeam klystron. A working mode is a 2n mode with a frequency of 24.15 GHz. Electrodynamic characteristics of the cavity (characteristic impendance, beam coupling factor, relative electronic conductivity, Q‐factor) were calculated and the conditions for achieving the maximum effciency are found. Based on the obtained data, the required number of gaps in the output cavity was estimated, as well as the power and efficiency of the multibeam klystron with this type of cavities, depending on the microperveance of the electron beam.
doi_str_mv 10.1002/mop.32674
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2494067017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2494067017</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2574-ecce517382837b0a86a9ce30f4acb60c05334469edbf7d327660f9ed06fd78ba3</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EEqUw8A8sMTGkvdiOnYyo4ksUhQFmy3Ec5JLUwXZA4dcTCCvT6U7Pvad7EDpPYZUCkHXn-hUlXLADtEihyBMiOByiBeRFlhAmxDE6CWEHAFQIskAPZR9tZ79UtG6PXYO7oY22MqrDb-0Yop-mtRuq1uBX1WOtPmy0JuDWqdrUuBpxZ6JqsXd1OEVHjWqDOfurS_Ryc_28uUu25e395mqbaJIJlhitTZYKmpOcigpUzlWhDYWGKV1x0JBRyhgvTF01oqbTAxyaqQPe1CKvFF2iizm39-59MCHKnRv8fjopCSsYcAFT_BJdzpT2LgRvGtl72yk_yhTkjys5uZK_riZ2PbOftjXj_6B8LJ_mjW-YYGt6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2494067017</pqid></control><display><type>article</type><title>Optimization of multibeam klystron double gap cavities loaded by metal rods</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Muchkaev, V. Yu ; Tsarev, V. A.</creator><creatorcontrib>Muchkaev, V. Yu ; Tsarev, V. A.</creatorcontrib><description>In this paper, the results of numerical investigation of a metal photonic band gap cavity are presented. The investigated resonator is dual‐gap and is considered as an intermediate for the K‐band multibeam klystron. A working mode is a 2n mode with a frequency of 24.15 GHz. Electrodynamic characteristics of the cavity (characteristic impendance, beam coupling factor, relative electronic conductivity, Q‐factor) were calculated and the conditions for achieving the maximum effciency are found. Based on the obtained data, the required number of gaps in the output cavity was estimated, as well as the power and efficiency of the multibeam klystron with this type of cavities, depending on the microperveance of the electron beam.</description><identifier>ISSN: 0895-2477</identifier><identifier>EISSN: 1098-2760</identifier><identifier>DOI: 10.1002/mop.32674</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>3D numerical simula‐ tion ; Cavity resonators ; double‐gap resonator ; Electron beams ; multibeam klystron ; Optimization ; Photonic band gaps ; photonic crystal lattice</subject><ispartof>Microwave and optical technology letters, 2021-04, Vol.63 (4), p.1035-1041</ispartof><rights>2020 Wiley Periodicals LLC.</rights><rights>2021 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2574-ecce517382837b0a86a9ce30f4acb60c05334469edbf7d327660f9ed06fd78ba3</cites><orcidid>0000-0001-8298-9120</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Muchkaev, V. Yu</creatorcontrib><creatorcontrib>Tsarev, V. A.</creatorcontrib><title>Optimization of multibeam klystron double gap cavities loaded by metal rods</title><title>Microwave and optical technology letters</title><description>In this paper, the results of numerical investigation of a metal photonic band gap cavity are presented. The investigated resonator is dual‐gap and is considered as an intermediate for the K‐band multibeam klystron. A working mode is a 2n mode with a frequency of 24.15 GHz. Electrodynamic characteristics of the cavity (characteristic impendance, beam coupling factor, relative electronic conductivity, Q‐factor) were calculated and the conditions for achieving the maximum effciency are found. Based on the obtained data, the required number of gaps in the output cavity was estimated, as well as the power and efficiency of the multibeam klystron with this type of cavities, depending on the microperveance of the electron beam.</description><subject>3D numerical simula‐ tion</subject><subject>Cavity resonators</subject><subject>double‐gap resonator</subject><subject>Electron beams</subject><subject>multibeam klystron</subject><subject>Optimization</subject><subject>Photonic band gaps</subject><subject>photonic crystal lattice</subject><issn>0895-2477</issn><issn>1098-2760</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EEqUw8A8sMTGkvdiOnYyo4ksUhQFmy3Ec5JLUwXZA4dcTCCvT6U7Pvad7EDpPYZUCkHXn-hUlXLADtEihyBMiOByiBeRFlhAmxDE6CWEHAFQIskAPZR9tZ79UtG6PXYO7oY22MqrDb-0Yop-mtRuq1uBX1WOtPmy0JuDWqdrUuBpxZ6JqsXd1OEVHjWqDOfurS_Ryc_28uUu25e395mqbaJIJlhitTZYKmpOcigpUzlWhDYWGKV1x0JBRyhgvTF01oqbTAxyaqQPe1CKvFF2iizm39-59MCHKnRv8fjopCSsYcAFT_BJdzpT2LgRvGtl72yk_yhTkjys5uZK_riZ2PbOftjXj_6B8LJ_mjW-YYGt6</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Muchkaev, V. Yu</creator><creator>Tsarev, V. A.</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8298-9120</orcidid></search><sort><creationdate>202104</creationdate><title>Optimization of multibeam klystron double gap cavities loaded by metal rods</title><author>Muchkaev, V. Yu ; Tsarev, V. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2574-ecce517382837b0a86a9ce30f4acb60c05334469edbf7d327660f9ed06fd78ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>3D numerical simula‐ tion</topic><topic>Cavity resonators</topic><topic>double‐gap resonator</topic><topic>Electron beams</topic><topic>multibeam klystron</topic><topic>Optimization</topic><topic>Photonic band gaps</topic><topic>photonic crystal lattice</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muchkaev, V. Yu</creatorcontrib><creatorcontrib>Tsarev, V. A.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Microwave and optical technology letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muchkaev, V. Yu</au><au>Tsarev, V. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of multibeam klystron double gap cavities loaded by metal rods</atitle><jtitle>Microwave and optical technology letters</jtitle><date>2021-04</date><risdate>2021</risdate><volume>63</volume><issue>4</issue><spage>1035</spage><epage>1041</epage><pages>1035-1041</pages><issn>0895-2477</issn><eissn>1098-2760</eissn><abstract>In this paper, the results of numerical investigation of a metal photonic band gap cavity are presented. The investigated resonator is dual‐gap and is considered as an intermediate for the K‐band multibeam klystron. A working mode is a 2n mode with a frequency of 24.15 GHz. Electrodynamic characteristics of the cavity (characteristic impendance, beam coupling factor, relative electronic conductivity, Q‐factor) were calculated and the conditions for achieving the maximum effciency are found. Based on the obtained data, the required number of gaps in the output cavity was estimated, as well as the power and efficiency of the multibeam klystron with this type of cavities, depending on the microperveance of the electron beam.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/mop.32674</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-8298-9120</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0895-2477
ispartof Microwave and optical technology letters, 2021-04, Vol.63 (4), p.1035-1041
issn 0895-2477
1098-2760
language eng
recordid cdi_proquest_journals_2494067017
source Wiley-Blackwell Read & Publish Collection
subjects 3D numerical simula‐ tion
Cavity resonators
double‐gap resonator
Electron beams
multibeam klystron
Optimization
Photonic band gaps
photonic crystal lattice
title Optimization of multibeam klystron double gap cavities loaded by metal rods
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T21%3A32%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20multibeam%20klystron%20double%20gap%20cavities%20loaded%20by%20metal%20rods&rft.jtitle=Microwave%20and%20optical%20technology%20letters&rft.au=Muchkaev,%20V.%20Yu&rft.date=2021-04&rft.volume=63&rft.issue=4&rft.spage=1035&rft.epage=1041&rft.pages=1035-1041&rft.issn=0895-2477&rft.eissn=1098-2760&rft_id=info:doi/10.1002/mop.32674&rft_dat=%3Cproquest_cross%3E2494067017%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2574-ecce517382837b0a86a9ce30f4acb60c05334469edbf7d327660f9ed06fd78ba3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2494067017&rft_id=info:pmid/&rfr_iscdi=true