Loading…
Optimization of multibeam klystron double gap cavities loaded by metal rods
In this paper, the results of numerical investigation of a metal photonic band gap cavity are presented. The investigated resonator is dual‐gap and is considered as an intermediate for the K‐band multibeam klystron. A working mode is a 2n mode with a frequency of 24.15 GHz. Electrodynamic characteri...
Saved in:
Published in: | Microwave and optical technology letters 2021-04, Vol.63 (4), p.1035-1041 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c2574-ecce517382837b0a86a9ce30f4acb60c05334469edbf7d327660f9ed06fd78ba3 |
container_end_page | 1041 |
container_issue | 4 |
container_start_page | 1035 |
container_title | Microwave and optical technology letters |
container_volume | 63 |
creator | Muchkaev, V. Yu Tsarev, V. A. |
description | In this paper, the results of numerical investigation of a metal photonic band gap cavity are presented. The investigated resonator is dual‐gap and is considered as an intermediate for the K‐band multibeam klystron. A working mode is a 2n mode with a frequency of 24.15 GHz. Electrodynamic characteristics of the cavity (characteristic impendance, beam coupling factor, relative electronic conductivity, Q‐factor) were calculated and the conditions for achieving the maximum effciency are found. Based on the obtained data, the required number of gaps in the output cavity was estimated, as well as the power and efficiency of the multibeam klystron with this type of cavities, depending on the microperveance of the electron beam. |
doi_str_mv | 10.1002/mop.32674 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2494067017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2494067017</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2574-ecce517382837b0a86a9ce30f4acb60c05334469edbf7d327660f9ed06fd78ba3</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EEqUw8A8sMTGkvdiOnYyo4ksUhQFmy3Ec5JLUwXZA4dcTCCvT6U7Pvad7EDpPYZUCkHXn-hUlXLADtEihyBMiOByiBeRFlhAmxDE6CWEHAFQIskAPZR9tZ79UtG6PXYO7oY22MqrDb-0Yop-mtRuq1uBX1WOtPmy0JuDWqdrUuBpxZ6JqsXd1OEVHjWqDOfurS_Ryc_28uUu25e395mqbaJIJlhitTZYKmpOcigpUzlWhDYWGKV1x0JBRyhgvTF01oqbTAxyaqQPe1CKvFF2iizm39-59MCHKnRv8fjopCSsYcAFT_BJdzpT2LgRvGtl72yk_yhTkjys5uZK_riZ2PbOftjXj_6B8LJ_mjW-YYGt6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2494067017</pqid></control><display><type>article</type><title>Optimization of multibeam klystron double gap cavities loaded by metal rods</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Muchkaev, V. Yu ; Tsarev, V. A.</creator><creatorcontrib>Muchkaev, V. Yu ; Tsarev, V. A.</creatorcontrib><description>In this paper, the results of numerical investigation of a metal photonic band gap cavity are presented. The investigated resonator is dual‐gap and is considered as an intermediate for the K‐band multibeam klystron. A working mode is a 2n mode with a frequency of 24.15 GHz. Electrodynamic characteristics of the cavity (characteristic impendance, beam coupling factor, relative electronic conductivity, Q‐factor) were calculated and the conditions for achieving the maximum effciency are found. Based on the obtained data, the required number of gaps in the output cavity was estimated, as well as the power and efficiency of the multibeam klystron with this type of cavities, depending on the microperveance of the electron beam.</description><identifier>ISSN: 0895-2477</identifier><identifier>EISSN: 1098-2760</identifier><identifier>DOI: 10.1002/mop.32674</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>3D numerical simula‐ tion ; Cavity resonators ; double‐gap resonator ; Electron beams ; multibeam klystron ; Optimization ; Photonic band gaps ; photonic crystal lattice</subject><ispartof>Microwave and optical technology letters, 2021-04, Vol.63 (4), p.1035-1041</ispartof><rights>2020 Wiley Periodicals LLC.</rights><rights>2021 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2574-ecce517382837b0a86a9ce30f4acb60c05334469edbf7d327660f9ed06fd78ba3</cites><orcidid>0000-0001-8298-9120</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Muchkaev, V. Yu</creatorcontrib><creatorcontrib>Tsarev, V. A.</creatorcontrib><title>Optimization of multibeam klystron double gap cavities loaded by metal rods</title><title>Microwave and optical technology letters</title><description>In this paper, the results of numerical investigation of a metal photonic band gap cavity are presented. The investigated resonator is dual‐gap and is considered as an intermediate for the K‐band multibeam klystron. A working mode is a 2n mode with a frequency of 24.15 GHz. Electrodynamic characteristics of the cavity (characteristic impendance, beam coupling factor, relative electronic conductivity, Q‐factor) were calculated and the conditions for achieving the maximum effciency are found. Based on the obtained data, the required number of gaps in the output cavity was estimated, as well as the power and efficiency of the multibeam klystron with this type of cavities, depending on the microperveance of the electron beam.</description><subject>3D numerical simula‐ tion</subject><subject>Cavity resonators</subject><subject>double‐gap resonator</subject><subject>Electron beams</subject><subject>multibeam klystron</subject><subject>Optimization</subject><subject>Photonic band gaps</subject><subject>photonic crystal lattice</subject><issn>0895-2477</issn><issn>1098-2760</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EEqUw8A8sMTGkvdiOnYyo4ksUhQFmy3Ec5JLUwXZA4dcTCCvT6U7Pvad7EDpPYZUCkHXn-hUlXLADtEihyBMiOByiBeRFlhAmxDE6CWEHAFQIskAPZR9tZ79UtG6PXYO7oY22MqrDb-0Yop-mtRuq1uBX1WOtPmy0JuDWqdrUuBpxZ6JqsXd1OEVHjWqDOfurS_Ryc_28uUu25e395mqbaJIJlhitTZYKmpOcigpUzlWhDYWGKV1x0JBRyhgvTF01oqbTAxyaqQPe1CKvFF2iizm39-59MCHKnRv8fjopCSsYcAFT_BJdzpT2LgRvGtl72yk_yhTkjys5uZK_riZ2PbOftjXj_6B8LJ_mjW-YYGt6</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Muchkaev, V. Yu</creator><creator>Tsarev, V. A.</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8298-9120</orcidid></search><sort><creationdate>202104</creationdate><title>Optimization of multibeam klystron double gap cavities loaded by metal rods</title><author>Muchkaev, V. Yu ; Tsarev, V. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2574-ecce517382837b0a86a9ce30f4acb60c05334469edbf7d327660f9ed06fd78ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>3D numerical simula‐ tion</topic><topic>Cavity resonators</topic><topic>double‐gap resonator</topic><topic>Electron beams</topic><topic>multibeam klystron</topic><topic>Optimization</topic><topic>Photonic band gaps</topic><topic>photonic crystal lattice</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muchkaev, V. Yu</creatorcontrib><creatorcontrib>Tsarev, V. A.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Microwave and optical technology letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muchkaev, V. Yu</au><au>Tsarev, V. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of multibeam klystron double gap cavities loaded by metal rods</atitle><jtitle>Microwave and optical technology letters</jtitle><date>2021-04</date><risdate>2021</risdate><volume>63</volume><issue>4</issue><spage>1035</spage><epage>1041</epage><pages>1035-1041</pages><issn>0895-2477</issn><eissn>1098-2760</eissn><abstract>In this paper, the results of numerical investigation of a metal photonic band gap cavity are presented. The investigated resonator is dual‐gap and is considered as an intermediate for the K‐band multibeam klystron. A working mode is a 2n mode with a frequency of 24.15 GHz. Electrodynamic characteristics of the cavity (characteristic impendance, beam coupling factor, relative electronic conductivity, Q‐factor) were calculated and the conditions for achieving the maximum effciency are found. Based on the obtained data, the required number of gaps in the output cavity was estimated, as well as the power and efficiency of the multibeam klystron with this type of cavities, depending on the microperveance of the electron beam.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/mop.32674</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-8298-9120</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0895-2477 |
ispartof | Microwave and optical technology letters, 2021-04, Vol.63 (4), p.1035-1041 |
issn | 0895-2477 1098-2760 |
language | eng |
recordid | cdi_proquest_journals_2494067017 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | 3D numerical simula‐ tion Cavity resonators double‐gap resonator Electron beams multibeam klystron Optimization Photonic band gaps photonic crystal lattice |
title | Optimization of multibeam klystron double gap cavities loaded by metal rods |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T21%3A32%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20multibeam%20klystron%20double%20gap%20cavities%20loaded%20by%20metal%20rods&rft.jtitle=Microwave%20and%20optical%20technology%20letters&rft.au=Muchkaev,%20V.%20Yu&rft.date=2021-04&rft.volume=63&rft.issue=4&rft.spage=1035&rft.epage=1041&rft.pages=1035-1041&rft.issn=0895-2477&rft.eissn=1098-2760&rft_id=info:doi/10.1002/mop.32674&rft_dat=%3Cproquest_cross%3E2494067017%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2574-ecce517382837b0a86a9ce30f4acb60c05334469edbf7d327660f9ed06fd78ba3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2494067017&rft_id=info:pmid/&rfr_iscdi=true |