Loading…
An Adaptive Distributionally Robust Model for Three-Phase Distribution Network Reconfiguration
Distributed generator (DG) volatility has a great impact on system operation, which should be considered beforehand due to the slow time scale of distribution network reconfiguration (DNR). However, it is difficult to derive accurate probability distributions (PDs) for DG outputs and loads analytica...
Saved in:
Published in: | IEEE transactions on smart grid 2021-03, Vol.12 (2), p.1224-1237 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c338t-46626b9d5695d6511020df8414ae25a747ee82c4a79e996fd0c995a26641dc843 |
---|---|
cites | cdi_FETCH-LOGICAL-c338t-46626b9d5695d6511020df8414ae25a747ee82c4a79e996fd0c995a26641dc843 |
container_end_page | 1237 |
container_issue | 2 |
container_start_page | 1224 |
container_title | IEEE transactions on smart grid |
container_volume | 12 |
creator | Zheng, Weiye Huang, Wanjun Hill, David J. Hou, Yunhe |
description | Distributed generator (DG) volatility has a great impact on system operation, which should be considered beforehand due to the slow time scale of distribution network reconfiguration (DNR). However, it is difficult to derive accurate probability distributions (PDs) for DG outputs and loads analytically. To remove the assumptions on accurate PD knowledge, a deep neural network is first devised to learn the reference joint PD from historical data in an adaptive way. The reference PD along with the forecast errors are enveloped by a distributional ambiguity set using Kullback-Leibler divergence. Then a distributionally robust model for three-phase unbalanced DNR is proposed to obtain the optimal configuration under the worst-case PD of DG outputs and loads within the ambiguity set. The result inherits the advantages of stochastic optimization and robust optimization. Finally, a modified column-and-constraint generation method with efficient scenario decomposition is investigated to solve this model. Numerical tests are carried out using an IEEE unbalanced benchmark and a practical-scale system in Shandong, China. Comparison with the deterministic, stochastic and robust DNR methods validates the effectiveness of the proposed method. |
doi_str_mv | 10.1109/TSG.2020.3030299 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2494375606</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9222311</ieee_id><sourcerecordid>2494375606</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-46626b9d5695d6511020df8414ae25a747ee82c4a79e996fd0c995a26641dc843</originalsourceid><addsrcrecordid>eNpVkE1Lw0AQhhdRsNTeBS8LnlP3K5vMsVStQv2g1qvLNpnY1Nituxul_96USsG5zDA8M_A-hJxzNuScwdX8ZTIUTLChZJIJgCPS46AgkUzz48OcylMyCGHFupJSagE98jZa01FpN7H-Rnpdh-jrRRtrt7ZNs6Uzt2hDpA-uxIZWztP50iMmz0sb_tP0EeOP8x90hoVbV_V76-1uf0ZOKtsEHPz1Pnm9vZmP75Lp0-R-PJomhZR5TJTWQi-gTDWkpU67TIKVVa64sihSm6kMMReFshkggK5KVgCkVmiteFnkSvbJ5f7vxruvFkM0K9f6LkQwQoGSWaqZ7ii2pwrvQvBYmY2vP63fGs7MTqTpRJqdSPMnsju52J_UiHjAQQghOZe_J1RuXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2494375606</pqid></control><display><type>article</type><title>An Adaptive Distributionally Robust Model for Three-Phase Distribution Network Reconfiguration</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Zheng, Weiye ; Huang, Wanjun ; Hill, David J. ; Hou, Yunhe</creator><creatorcontrib>Zheng, Weiye ; Huang, Wanjun ; Hill, David J. ; Hou, Yunhe</creatorcontrib><description>Distributed generator (DG) volatility has a great impact on system operation, which should be considered beforehand due to the slow time scale of distribution network reconfiguration (DNR). However, it is difficult to derive accurate probability distributions (PDs) for DG outputs and loads analytically. To remove the assumptions on accurate PD knowledge, a deep neural network is first devised to learn the reference joint PD from historical data in an adaptive way. The reference PD along with the forecast errors are enveloped by a distributional ambiguity set using Kullback-Leibler divergence. Then a distributionally robust model for three-phase unbalanced DNR is proposed to obtain the optimal configuration under the worst-case PD of DG outputs and loads within the ambiguity set. The result inherits the advantages of stochastic optimization and robust optimization. Finally, a modified column-and-constraint generation method with efficient scenario decomposition is investigated to solve this model. Numerical tests are carried out using an IEEE unbalanced benchmark and a practical-scale system in Shandong, China. Comparison with the deterministic, stochastic and robust DNR methods validates the effectiveness of the proposed method.</description><identifier>ISSN: 1949-3053</identifier><identifier>EISSN: 1949-3061</identifier><identifier>DOI: 10.1109/TSG.2020.3030299</identifier><identifier>CODEN: ITSGBQ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptation models ; Ambiguity ; Artificial neural networks ; deep neural network ; Distributed generation ; distribution network reconfiguration ; Distribution networks ; Distributionally robust optimization ; Electronic equipment tests ; Load modeling ; Logic gates ; Model testing ; Optimization ; Phase distribution ; Probability distribution ; Reconfiguration ; Robustness (mathematics) ; Stochastic processes ; three-phase unbalanced distribution system</subject><ispartof>IEEE transactions on smart grid, 2021-03, Vol.12 (2), p.1224-1237</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-46626b9d5695d6511020df8414ae25a747ee82c4a79e996fd0c995a26641dc843</citedby><cites>FETCH-LOGICAL-c338t-46626b9d5695d6511020df8414ae25a747ee82c4a79e996fd0c995a26641dc843</cites><orcidid>0000-0002-6851-3705 ; 0000-0003-4036-0839 ; 0000-0002-8882-9897 ; 0000-0002-8387-1973</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9222311$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Zheng, Weiye</creatorcontrib><creatorcontrib>Huang, Wanjun</creatorcontrib><creatorcontrib>Hill, David J.</creatorcontrib><creatorcontrib>Hou, Yunhe</creatorcontrib><title>An Adaptive Distributionally Robust Model for Three-Phase Distribution Network Reconfiguration</title><title>IEEE transactions on smart grid</title><addtitle>TSG</addtitle><description>Distributed generator (DG) volatility has a great impact on system operation, which should be considered beforehand due to the slow time scale of distribution network reconfiguration (DNR). However, it is difficult to derive accurate probability distributions (PDs) for DG outputs and loads analytically. To remove the assumptions on accurate PD knowledge, a deep neural network is first devised to learn the reference joint PD from historical data in an adaptive way. The reference PD along with the forecast errors are enveloped by a distributional ambiguity set using Kullback-Leibler divergence. Then a distributionally robust model for three-phase unbalanced DNR is proposed to obtain the optimal configuration under the worst-case PD of DG outputs and loads within the ambiguity set. The result inherits the advantages of stochastic optimization and robust optimization. Finally, a modified column-and-constraint generation method with efficient scenario decomposition is investigated to solve this model. Numerical tests are carried out using an IEEE unbalanced benchmark and a practical-scale system in Shandong, China. Comparison with the deterministic, stochastic and robust DNR methods validates the effectiveness of the proposed method.</description><subject>Adaptation models</subject><subject>Ambiguity</subject><subject>Artificial neural networks</subject><subject>deep neural network</subject><subject>Distributed generation</subject><subject>distribution network reconfiguration</subject><subject>Distribution networks</subject><subject>Distributionally robust optimization</subject><subject>Electronic equipment tests</subject><subject>Load modeling</subject><subject>Logic gates</subject><subject>Model testing</subject><subject>Optimization</subject><subject>Phase distribution</subject><subject>Probability distribution</subject><subject>Reconfiguration</subject><subject>Robustness (mathematics)</subject><subject>Stochastic processes</subject><subject>three-phase unbalanced distribution system</subject><issn>1949-3053</issn><issn>1949-3061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpVkE1Lw0AQhhdRsNTeBS8LnlP3K5vMsVStQv2g1qvLNpnY1Nituxul_96USsG5zDA8M_A-hJxzNuScwdX8ZTIUTLChZJIJgCPS46AgkUzz48OcylMyCGHFupJSagE98jZa01FpN7H-Rnpdh-jrRRtrt7ZNs6Uzt2hDpA-uxIZWztP50iMmz0sb_tP0EeOP8x90hoVbV_V76-1uf0ZOKtsEHPz1Pnm9vZmP75Lp0-R-PJomhZR5TJTWQi-gTDWkpU67TIKVVa64sihSm6kMMReFshkggK5KVgCkVmiteFnkSvbJ5f7vxruvFkM0K9f6LkQwQoGSWaqZ7ii2pwrvQvBYmY2vP63fGs7MTqTpRJqdSPMnsju52J_UiHjAQQghOZe_J1RuXg</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Zheng, Weiye</creator><creator>Huang, Wanjun</creator><creator>Hill, David J.</creator><creator>Hou, Yunhe</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6851-3705</orcidid><orcidid>https://orcid.org/0000-0003-4036-0839</orcidid><orcidid>https://orcid.org/0000-0002-8882-9897</orcidid><orcidid>https://orcid.org/0000-0002-8387-1973</orcidid></search><sort><creationdate>20210301</creationdate><title>An Adaptive Distributionally Robust Model for Three-Phase Distribution Network Reconfiguration</title><author>Zheng, Weiye ; Huang, Wanjun ; Hill, David J. ; Hou, Yunhe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-46626b9d5695d6511020df8414ae25a747ee82c4a79e996fd0c995a26641dc843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptation models</topic><topic>Ambiguity</topic><topic>Artificial neural networks</topic><topic>deep neural network</topic><topic>Distributed generation</topic><topic>distribution network reconfiguration</topic><topic>Distribution networks</topic><topic>Distributionally robust optimization</topic><topic>Electronic equipment tests</topic><topic>Load modeling</topic><topic>Logic gates</topic><topic>Model testing</topic><topic>Optimization</topic><topic>Phase distribution</topic><topic>Probability distribution</topic><topic>Reconfiguration</topic><topic>Robustness (mathematics)</topic><topic>Stochastic processes</topic><topic>three-phase unbalanced distribution system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Weiye</creatorcontrib><creatorcontrib>Huang, Wanjun</creatorcontrib><creatorcontrib>Hill, David J.</creatorcontrib><creatorcontrib>Hou, Yunhe</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on smart grid</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Weiye</au><au>Huang, Wanjun</au><au>Hill, David J.</au><au>Hou, Yunhe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Adaptive Distributionally Robust Model for Three-Phase Distribution Network Reconfiguration</atitle><jtitle>IEEE transactions on smart grid</jtitle><stitle>TSG</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>12</volume><issue>2</issue><spage>1224</spage><epage>1237</epage><pages>1224-1237</pages><issn>1949-3053</issn><eissn>1949-3061</eissn><coden>ITSGBQ</coden><abstract>Distributed generator (DG) volatility has a great impact on system operation, which should be considered beforehand due to the slow time scale of distribution network reconfiguration (DNR). However, it is difficult to derive accurate probability distributions (PDs) for DG outputs and loads analytically. To remove the assumptions on accurate PD knowledge, a deep neural network is first devised to learn the reference joint PD from historical data in an adaptive way. The reference PD along with the forecast errors are enveloped by a distributional ambiguity set using Kullback-Leibler divergence. Then a distributionally robust model for three-phase unbalanced DNR is proposed to obtain the optimal configuration under the worst-case PD of DG outputs and loads within the ambiguity set. The result inherits the advantages of stochastic optimization and robust optimization. Finally, a modified column-and-constraint generation method with efficient scenario decomposition is investigated to solve this model. Numerical tests are carried out using an IEEE unbalanced benchmark and a practical-scale system in Shandong, China. Comparison with the deterministic, stochastic and robust DNR methods validates the effectiveness of the proposed method.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSG.2020.3030299</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6851-3705</orcidid><orcidid>https://orcid.org/0000-0003-4036-0839</orcidid><orcidid>https://orcid.org/0000-0002-8882-9897</orcidid><orcidid>https://orcid.org/0000-0002-8387-1973</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1949-3053 |
ispartof | IEEE transactions on smart grid, 2021-03, Vol.12 (2), p.1224-1237 |
issn | 1949-3053 1949-3061 |
language | eng |
recordid | cdi_proquest_journals_2494375606 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Adaptation models Ambiguity Artificial neural networks deep neural network Distributed generation distribution network reconfiguration Distribution networks Distributionally robust optimization Electronic equipment tests Load modeling Logic gates Model testing Optimization Phase distribution Probability distribution Reconfiguration Robustness (mathematics) Stochastic processes three-phase unbalanced distribution system |
title | An Adaptive Distributionally Robust Model for Three-Phase Distribution Network Reconfiguration |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A48%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Adaptive%20Distributionally%20Robust%20Model%20for%20Three-Phase%20Distribution%20Network%20Reconfiguration&rft.jtitle=IEEE%20transactions%20on%20smart%20grid&rft.au=Zheng,%20Weiye&rft.date=2021-03-01&rft.volume=12&rft.issue=2&rft.spage=1224&rft.epage=1237&rft.pages=1224-1237&rft.issn=1949-3053&rft.eissn=1949-3061&rft.coden=ITSGBQ&rft_id=info:doi/10.1109/TSG.2020.3030299&rft_dat=%3Cproquest_ieee_%3E2494375606%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-46626b9d5695d6511020df8414ae25a747ee82c4a79e996fd0c995a26641dc843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2494375606&rft_id=info:pmid/&rft_ieee_id=9222311&rfr_iscdi=true |