Loading…

An Adaptive Distributionally Robust Model for Three-Phase Distribution Network Reconfiguration

Distributed generator (DG) volatility has a great impact on system operation, which should be considered beforehand due to the slow time scale of distribution network reconfiguration (DNR). However, it is difficult to derive accurate probability distributions (PDs) for DG outputs and loads analytica...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on smart grid 2021-03, Vol.12 (2), p.1224-1237
Main Authors: Zheng, Weiye, Huang, Wanjun, Hill, David J., Hou, Yunhe
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c338t-46626b9d5695d6511020df8414ae25a747ee82c4a79e996fd0c995a26641dc843
cites cdi_FETCH-LOGICAL-c338t-46626b9d5695d6511020df8414ae25a747ee82c4a79e996fd0c995a26641dc843
container_end_page 1237
container_issue 2
container_start_page 1224
container_title IEEE transactions on smart grid
container_volume 12
creator Zheng, Weiye
Huang, Wanjun
Hill, David J.
Hou, Yunhe
description Distributed generator (DG) volatility has a great impact on system operation, which should be considered beforehand due to the slow time scale of distribution network reconfiguration (DNR). However, it is difficult to derive accurate probability distributions (PDs) for DG outputs and loads analytically. To remove the assumptions on accurate PD knowledge, a deep neural network is first devised to learn the reference joint PD from historical data in an adaptive way. The reference PD along with the forecast errors are enveloped by a distributional ambiguity set using Kullback-Leibler divergence. Then a distributionally robust model for three-phase unbalanced DNR is proposed to obtain the optimal configuration under the worst-case PD of DG outputs and loads within the ambiguity set. The result inherits the advantages of stochastic optimization and robust optimization. Finally, a modified column-and-constraint generation method with efficient scenario decomposition is investigated to solve this model. Numerical tests are carried out using an IEEE unbalanced benchmark and a practical-scale system in Shandong, China. Comparison with the deterministic, stochastic and robust DNR methods validates the effectiveness of the proposed method.
doi_str_mv 10.1109/TSG.2020.3030299
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2494375606</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9222311</ieee_id><sourcerecordid>2494375606</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-46626b9d5695d6511020df8414ae25a747ee82c4a79e996fd0c995a26641dc843</originalsourceid><addsrcrecordid>eNpVkE1Lw0AQhhdRsNTeBS8LnlP3K5vMsVStQv2g1qvLNpnY1Nituxul_96USsG5zDA8M_A-hJxzNuScwdX8ZTIUTLChZJIJgCPS46AgkUzz48OcylMyCGHFupJSagE98jZa01FpN7H-Rnpdh-jrRRtrt7ZNs6Uzt2hDpA-uxIZWztP50iMmz0sb_tP0EeOP8x90hoVbV_V76-1uf0ZOKtsEHPz1Pnm9vZmP75Lp0-R-PJomhZR5TJTWQi-gTDWkpU67TIKVVa64sihSm6kMMReFshkggK5KVgCkVmiteFnkSvbJ5f7vxruvFkM0K9f6LkQwQoGSWaqZ7ii2pwrvQvBYmY2vP63fGs7MTqTpRJqdSPMnsju52J_UiHjAQQghOZe_J1RuXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2494375606</pqid></control><display><type>article</type><title>An Adaptive Distributionally Robust Model for Three-Phase Distribution Network Reconfiguration</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Zheng, Weiye ; Huang, Wanjun ; Hill, David J. ; Hou, Yunhe</creator><creatorcontrib>Zheng, Weiye ; Huang, Wanjun ; Hill, David J. ; Hou, Yunhe</creatorcontrib><description>Distributed generator (DG) volatility has a great impact on system operation, which should be considered beforehand due to the slow time scale of distribution network reconfiguration (DNR). However, it is difficult to derive accurate probability distributions (PDs) for DG outputs and loads analytically. To remove the assumptions on accurate PD knowledge, a deep neural network is first devised to learn the reference joint PD from historical data in an adaptive way. The reference PD along with the forecast errors are enveloped by a distributional ambiguity set using Kullback-Leibler divergence. Then a distributionally robust model for three-phase unbalanced DNR is proposed to obtain the optimal configuration under the worst-case PD of DG outputs and loads within the ambiguity set. The result inherits the advantages of stochastic optimization and robust optimization. Finally, a modified column-and-constraint generation method with efficient scenario decomposition is investigated to solve this model. Numerical tests are carried out using an IEEE unbalanced benchmark and a practical-scale system in Shandong, China. Comparison with the deterministic, stochastic and robust DNR methods validates the effectiveness of the proposed method.</description><identifier>ISSN: 1949-3053</identifier><identifier>EISSN: 1949-3061</identifier><identifier>DOI: 10.1109/TSG.2020.3030299</identifier><identifier>CODEN: ITSGBQ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptation models ; Ambiguity ; Artificial neural networks ; deep neural network ; Distributed generation ; distribution network reconfiguration ; Distribution networks ; Distributionally robust optimization ; Electronic equipment tests ; Load modeling ; Logic gates ; Model testing ; Optimization ; Phase distribution ; Probability distribution ; Reconfiguration ; Robustness (mathematics) ; Stochastic processes ; three-phase unbalanced distribution system</subject><ispartof>IEEE transactions on smart grid, 2021-03, Vol.12 (2), p.1224-1237</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-46626b9d5695d6511020df8414ae25a747ee82c4a79e996fd0c995a26641dc843</citedby><cites>FETCH-LOGICAL-c338t-46626b9d5695d6511020df8414ae25a747ee82c4a79e996fd0c995a26641dc843</cites><orcidid>0000-0002-6851-3705 ; 0000-0003-4036-0839 ; 0000-0002-8882-9897 ; 0000-0002-8387-1973</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9222311$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Zheng, Weiye</creatorcontrib><creatorcontrib>Huang, Wanjun</creatorcontrib><creatorcontrib>Hill, David J.</creatorcontrib><creatorcontrib>Hou, Yunhe</creatorcontrib><title>An Adaptive Distributionally Robust Model for Three-Phase Distribution Network Reconfiguration</title><title>IEEE transactions on smart grid</title><addtitle>TSG</addtitle><description>Distributed generator (DG) volatility has a great impact on system operation, which should be considered beforehand due to the slow time scale of distribution network reconfiguration (DNR). However, it is difficult to derive accurate probability distributions (PDs) for DG outputs and loads analytically. To remove the assumptions on accurate PD knowledge, a deep neural network is first devised to learn the reference joint PD from historical data in an adaptive way. The reference PD along with the forecast errors are enveloped by a distributional ambiguity set using Kullback-Leibler divergence. Then a distributionally robust model for three-phase unbalanced DNR is proposed to obtain the optimal configuration under the worst-case PD of DG outputs and loads within the ambiguity set. The result inherits the advantages of stochastic optimization and robust optimization. Finally, a modified column-and-constraint generation method with efficient scenario decomposition is investigated to solve this model. Numerical tests are carried out using an IEEE unbalanced benchmark and a practical-scale system in Shandong, China. Comparison with the deterministic, stochastic and robust DNR methods validates the effectiveness of the proposed method.</description><subject>Adaptation models</subject><subject>Ambiguity</subject><subject>Artificial neural networks</subject><subject>deep neural network</subject><subject>Distributed generation</subject><subject>distribution network reconfiguration</subject><subject>Distribution networks</subject><subject>Distributionally robust optimization</subject><subject>Electronic equipment tests</subject><subject>Load modeling</subject><subject>Logic gates</subject><subject>Model testing</subject><subject>Optimization</subject><subject>Phase distribution</subject><subject>Probability distribution</subject><subject>Reconfiguration</subject><subject>Robustness (mathematics)</subject><subject>Stochastic processes</subject><subject>three-phase unbalanced distribution system</subject><issn>1949-3053</issn><issn>1949-3061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpVkE1Lw0AQhhdRsNTeBS8LnlP3K5vMsVStQv2g1qvLNpnY1Nituxul_96USsG5zDA8M_A-hJxzNuScwdX8ZTIUTLChZJIJgCPS46AgkUzz48OcylMyCGHFupJSagE98jZa01FpN7H-Rnpdh-jrRRtrt7ZNs6Uzt2hDpA-uxIZWztP50iMmz0sb_tP0EeOP8x90hoVbV_V76-1uf0ZOKtsEHPz1Pnm9vZmP75Lp0-R-PJomhZR5TJTWQi-gTDWkpU67TIKVVa64sihSm6kMMReFshkggK5KVgCkVmiteFnkSvbJ5f7vxruvFkM0K9f6LkQwQoGSWaqZ7ii2pwrvQvBYmY2vP63fGs7MTqTpRJqdSPMnsju52J_UiHjAQQghOZe_J1RuXg</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Zheng, Weiye</creator><creator>Huang, Wanjun</creator><creator>Hill, David J.</creator><creator>Hou, Yunhe</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6851-3705</orcidid><orcidid>https://orcid.org/0000-0003-4036-0839</orcidid><orcidid>https://orcid.org/0000-0002-8882-9897</orcidid><orcidid>https://orcid.org/0000-0002-8387-1973</orcidid></search><sort><creationdate>20210301</creationdate><title>An Adaptive Distributionally Robust Model for Three-Phase Distribution Network Reconfiguration</title><author>Zheng, Weiye ; Huang, Wanjun ; Hill, David J. ; Hou, Yunhe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-46626b9d5695d6511020df8414ae25a747ee82c4a79e996fd0c995a26641dc843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptation models</topic><topic>Ambiguity</topic><topic>Artificial neural networks</topic><topic>deep neural network</topic><topic>Distributed generation</topic><topic>distribution network reconfiguration</topic><topic>Distribution networks</topic><topic>Distributionally robust optimization</topic><topic>Electronic equipment tests</topic><topic>Load modeling</topic><topic>Logic gates</topic><topic>Model testing</topic><topic>Optimization</topic><topic>Phase distribution</topic><topic>Probability distribution</topic><topic>Reconfiguration</topic><topic>Robustness (mathematics)</topic><topic>Stochastic processes</topic><topic>three-phase unbalanced distribution system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Weiye</creatorcontrib><creatorcontrib>Huang, Wanjun</creatorcontrib><creatorcontrib>Hill, David J.</creatorcontrib><creatorcontrib>Hou, Yunhe</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on smart grid</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Weiye</au><au>Huang, Wanjun</au><au>Hill, David J.</au><au>Hou, Yunhe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Adaptive Distributionally Robust Model for Three-Phase Distribution Network Reconfiguration</atitle><jtitle>IEEE transactions on smart grid</jtitle><stitle>TSG</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>12</volume><issue>2</issue><spage>1224</spage><epage>1237</epage><pages>1224-1237</pages><issn>1949-3053</issn><eissn>1949-3061</eissn><coden>ITSGBQ</coden><abstract>Distributed generator (DG) volatility has a great impact on system operation, which should be considered beforehand due to the slow time scale of distribution network reconfiguration (DNR). However, it is difficult to derive accurate probability distributions (PDs) for DG outputs and loads analytically. To remove the assumptions on accurate PD knowledge, a deep neural network is first devised to learn the reference joint PD from historical data in an adaptive way. The reference PD along with the forecast errors are enveloped by a distributional ambiguity set using Kullback-Leibler divergence. Then a distributionally robust model for three-phase unbalanced DNR is proposed to obtain the optimal configuration under the worst-case PD of DG outputs and loads within the ambiguity set. The result inherits the advantages of stochastic optimization and robust optimization. Finally, a modified column-and-constraint generation method with efficient scenario decomposition is investigated to solve this model. Numerical tests are carried out using an IEEE unbalanced benchmark and a practical-scale system in Shandong, China. Comparison with the deterministic, stochastic and robust DNR methods validates the effectiveness of the proposed method.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSG.2020.3030299</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6851-3705</orcidid><orcidid>https://orcid.org/0000-0003-4036-0839</orcidid><orcidid>https://orcid.org/0000-0002-8882-9897</orcidid><orcidid>https://orcid.org/0000-0002-8387-1973</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1949-3053
ispartof IEEE transactions on smart grid, 2021-03, Vol.12 (2), p.1224-1237
issn 1949-3053
1949-3061
language eng
recordid cdi_proquest_journals_2494375606
source IEEE Electronic Library (IEL) Journals
subjects Adaptation models
Ambiguity
Artificial neural networks
deep neural network
Distributed generation
distribution network reconfiguration
Distribution networks
Distributionally robust optimization
Electronic equipment tests
Load modeling
Logic gates
Model testing
Optimization
Phase distribution
Probability distribution
Reconfiguration
Robustness (mathematics)
Stochastic processes
three-phase unbalanced distribution system
title An Adaptive Distributionally Robust Model for Three-Phase Distribution Network Reconfiguration
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A48%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Adaptive%20Distributionally%20Robust%20Model%20for%20Three-Phase%20Distribution%20Network%20Reconfiguration&rft.jtitle=IEEE%20transactions%20on%20smart%20grid&rft.au=Zheng,%20Weiye&rft.date=2021-03-01&rft.volume=12&rft.issue=2&rft.spage=1224&rft.epage=1237&rft.pages=1224-1237&rft.issn=1949-3053&rft.eissn=1949-3061&rft.coden=ITSGBQ&rft_id=info:doi/10.1109/TSG.2020.3030299&rft_dat=%3Cproquest_ieee_%3E2494375606%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-46626b9d5695d6511020df8414ae25a747ee82c4a79e996fd0c995a26641dc843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2494375606&rft_id=info:pmid/&rft_ieee_id=9222311&rfr_iscdi=true