Loading…
A novel approach to the Jensen gap through Taylor's theorem
This article presents a new bound for the Jensen gap in classical as well as in generalized form through an integral identity deduced from Taylor's theorem. A discussion on the accuracy of the classical bound, through a numerical experiment, is a part of the paper. Also, the proposed bounds gen...
Saved in:
Published in: | Mathematical methods in the applied sciences 2021-03, Vol.44 (5), p.3324-3333 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2934-89852d7717cac586b805771ad397e1d8469edf2ba36b8244630bfe6ef808db593 |
---|---|
cites | cdi_FETCH-LOGICAL-c2934-89852d7717cac586b805771ad397e1d8469edf2ba36b8244630bfe6ef808db593 |
container_end_page | 3333 |
container_issue | 5 |
container_start_page | 3324 |
container_title | Mathematical methods in the applied sciences |
container_volume | 44 |
creator | Adil Khan, Muhammad Khan, Shahid Ullah, Inam Ali Khan, Khuram Chu, Yu‐Ming |
description | This article presents a new bound for the Jensen gap in classical as well as in generalized form through an integral identity deduced from Taylor's theorem. A discussion on the accuracy of the classical bound, through a numerical experiment, is a part of the paper. Also, the proposed bounds generate a bound for the Hermite–Hadamard gap and some reverses of the Hölder inequality. Finally, the paper deals with estimations of the Csiszár divergence and of some of its special cases. |
doi_str_mv | 10.1002/mma.6944 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2494683806</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2494683806</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2934-89852d7717cac586b805771ad397e1d8469edf2ba36b8244630bfe6ef808db593</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqUg8QmWWMAmZew4ji1WVcVTrdiUteUkkz6UxMFOQf17XMqW1ejqHs2MDiHXDCYMgN-3rZ1ILcQJGTHQOmEil6dkBCyHRHAmzslFCFsAUIzxEXmY0s59YUNt33tnyzUdHB3WSN-wC9jRle1j9G63WtOl3TfO34ZD7zy2l-Sstk3Aq785Jh9Pj8vZSzJ_f36dTedJyXUqEqVVxqs8Z3lpy0zJQkEWk61SnSOrlJAaq5oXNo0VF0KmUNQosVagqiLT6ZjcHPfGDz93GAazdTvfxZOGCy2kShXISN0dqdK7EDzWpveb1vq9YWAOakxUYw5qIpoc0e9Ng_t_ObNYTH_5H6K8YtY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2494683806</pqid></control><display><type>article</type><title>A novel approach to the Jensen gap through Taylor's theorem</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Adil Khan, Muhammad ; Khan, Shahid ; Ullah, Inam ; Ali Khan, Khuram ; Chu, Yu‐Ming</creator><creatorcontrib>Adil Khan, Muhammad ; Khan, Shahid ; Ullah, Inam ; Ali Khan, Khuram ; Chu, Yu‐Ming</creatorcontrib><description>This article presents a new bound for the Jensen gap in classical as well as in generalized form through an integral identity deduced from Taylor's theorem. A discussion on the accuracy of the classical bound, through a numerical experiment, is a part of the paper. Also, the proposed bounds generate a bound for the Hermite–Hadamard gap and some reverses of the Hölder inequality. Finally, the paper deals with estimations of the Csiszár divergence and of some of its special cases.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.6944</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>convex function ; csiszár divergence ; Hermite–Hadamard inequality ; Hölder inequality ; Jensen inequality ; Taylor's theorem ; Theorems</subject><ispartof>Mathematical methods in the applied sciences, 2021-03, Vol.44 (5), p.3324-3333</ispartof><rights>2020 John Wiley & Sons, Ltd.</rights><rights>2021 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2934-89852d7717cac586b805771ad397e1d8469edf2ba36b8244630bfe6ef808db593</citedby><cites>FETCH-LOGICAL-c2934-89852d7717cac586b805771ad397e1d8469edf2ba36b8244630bfe6ef808db593</cites><orcidid>0000-0002-0944-2134 ; 0000-0001-5373-4663 ; 0000-0002-3468-2295 ; 0000-0003-1966-3130</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Adil Khan, Muhammad</creatorcontrib><creatorcontrib>Khan, Shahid</creatorcontrib><creatorcontrib>Ullah, Inam</creatorcontrib><creatorcontrib>Ali Khan, Khuram</creatorcontrib><creatorcontrib>Chu, Yu‐Ming</creatorcontrib><title>A novel approach to the Jensen gap through Taylor's theorem</title><title>Mathematical methods in the applied sciences</title><description>This article presents a new bound for the Jensen gap in classical as well as in generalized form through an integral identity deduced from Taylor's theorem. A discussion on the accuracy of the classical bound, through a numerical experiment, is a part of the paper. Also, the proposed bounds generate a bound for the Hermite–Hadamard gap and some reverses of the Hölder inequality. Finally, the paper deals with estimations of the Csiszár divergence and of some of its special cases.</description><subject>convex function</subject><subject>csiszár divergence</subject><subject>Hermite–Hadamard inequality</subject><subject>Hölder inequality</subject><subject>Jensen inequality</subject><subject>Taylor's theorem</subject><subject>Theorems</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqUg8QmWWMAmZew4ji1WVcVTrdiUteUkkz6UxMFOQf17XMqW1ejqHs2MDiHXDCYMgN-3rZ1ILcQJGTHQOmEil6dkBCyHRHAmzslFCFsAUIzxEXmY0s59YUNt33tnyzUdHB3WSN-wC9jRle1j9G63WtOl3TfO34ZD7zy2l-Sstk3Aq785Jh9Pj8vZSzJ_f36dTedJyXUqEqVVxqs8Z3lpy0zJQkEWk61SnSOrlJAaq5oXNo0VF0KmUNQosVagqiLT6ZjcHPfGDz93GAazdTvfxZOGCy2kShXISN0dqdK7EDzWpveb1vq9YWAOakxUYw5qIpoc0e9Ng_t_ObNYTH_5H6K8YtY</recordid><startdate>20210330</startdate><enddate>20210330</enddate><creator>Adil Khan, Muhammad</creator><creator>Khan, Shahid</creator><creator>Ullah, Inam</creator><creator>Ali Khan, Khuram</creator><creator>Chu, Yu‐Ming</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-0944-2134</orcidid><orcidid>https://orcid.org/0000-0001-5373-4663</orcidid><orcidid>https://orcid.org/0000-0002-3468-2295</orcidid><orcidid>https://orcid.org/0000-0003-1966-3130</orcidid></search><sort><creationdate>20210330</creationdate><title>A novel approach to the Jensen gap through Taylor's theorem</title><author>Adil Khan, Muhammad ; Khan, Shahid ; Ullah, Inam ; Ali Khan, Khuram ; Chu, Yu‐Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2934-89852d7717cac586b805771ad397e1d8469edf2ba36b8244630bfe6ef808db593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>convex function</topic><topic>csiszár divergence</topic><topic>Hermite–Hadamard inequality</topic><topic>Hölder inequality</topic><topic>Jensen inequality</topic><topic>Taylor's theorem</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adil Khan, Muhammad</creatorcontrib><creatorcontrib>Khan, Shahid</creatorcontrib><creatorcontrib>Ullah, Inam</creatorcontrib><creatorcontrib>Ali Khan, Khuram</creatorcontrib><creatorcontrib>Chu, Yu‐Ming</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adil Khan, Muhammad</au><au>Khan, Shahid</au><au>Ullah, Inam</au><au>Ali Khan, Khuram</au><au>Chu, Yu‐Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel approach to the Jensen gap through Taylor's theorem</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2021-03-30</date><risdate>2021</risdate><volume>44</volume><issue>5</issue><spage>3324</spage><epage>3333</epage><pages>3324-3333</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>This article presents a new bound for the Jensen gap in classical as well as in generalized form through an integral identity deduced from Taylor's theorem. A discussion on the accuracy of the classical bound, through a numerical experiment, is a part of the paper. Also, the proposed bounds generate a bound for the Hermite–Hadamard gap and some reverses of the Hölder inequality. Finally, the paper deals with estimations of the Csiszár divergence and of some of its special cases.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.6944</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0944-2134</orcidid><orcidid>https://orcid.org/0000-0001-5373-4663</orcidid><orcidid>https://orcid.org/0000-0002-3468-2295</orcidid><orcidid>https://orcid.org/0000-0003-1966-3130</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0170-4214 |
ispartof | Mathematical methods in the applied sciences, 2021-03, Vol.44 (5), p.3324-3333 |
issn | 0170-4214 1099-1476 |
language | eng |
recordid | cdi_proquest_journals_2494683806 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | convex function csiszár divergence Hermite–Hadamard inequality Hölder inequality Jensen inequality Taylor's theorem Theorems |
title | A novel approach to the Jensen gap through Taylor's theorem |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A40%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20approach%20to%20the%20Jensen%20gap%20through%20Taylor's%20theorem&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Adil%20Khan,%20Muhammad&rft.date=2021-03-30&rft.volume=44&rft.issue=5&rft.spage=3324&rft.epage=3333&rft.pages=3324-3333&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.6944&rft_dat=%3Cproquest_cross%3E2494683806%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2934-89852d7717cac586b805771ad397e1d8469edf2ba36b8244630bfe6ef808db593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2494683806&rft_id=info:pmid/&rfr_iscdi=true |