Loading…
Color image DNA encryption using mRNA properties and non-adjacent coupled map lattices
This paper proposes a novel algorithm for encrypting color images. The innovation in this study is the use of messenger ribonucleic acid (mRNA) encoding to import into Deoxyribonucleic acid (DNA) encoding. For permutation of the plain image bits, we use Arnold’s Cat Map at the bit-level. Then, using...
Saved in:
Published in: | Multimedia tools and applications 2021-03, Vol.80 (6), p.8445-8469 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper proposes a novel algorithm for encrypting color images. The innovation in this study is the use of messenger ribonucleic acid (mRNA) encoding to import into Deoxyribonucleic acid (DNA) encoding. For permutation of the plain image bits, we use Arnold’s Cat Map at the bit-level. Then, using Non-Adjacent Coupled Map Lattices (NCML), we apply diffusion operations to the permuted color channels. We also provide the upgrade of the diffusion phase with DNA encoding. In the proposed algorithm, the choices are random depending on the secret key, which is implemented using a simple logistic map. Hashing the string entered by the user, the secret key, parameters, and initial values are generated by the Double MD5 method. The results of tests and security analysis showed that the results of encryption with this scheme are effective, and the key space is large enough to withstand common attacks. |
---|---|
ISSN: | 1380-7501 1573-7721 |
DOI: | 10.1007/s11042-020-10014-4 |