Loading…

Freeform optical surface design in an off-axis reflective imaging system by a double seed curve extension algorithm

A double seed curve extension (DSCE) method is proposed to design a freeform surface directly in an off-axis reflective imaging system. Compared with the basic seed curve extension (SCE) method, the DSCE can effectively reduce the error of freeform surface construction and improve the imaging qualit...

Full description

Saved in:
Bibliographic Details
Published in:Applied optics (2004) 2021-02, Vol.60 (4), p.942
Main Authors: Zhang, YangLiu, Wang, Xu, Su, ZhouPing, Pan, HongXiang, Chen, XingTao, Zhang, WenYu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A double seed curve extension (DSCE) method is proposed to design a freeform surface directly in an off-axis reflective imaging system. Compared with the basic seed curve extension (SCE) method, the DSCE can effectively reduce the error of freeform surface construction and improve the imaging quality of the off-axis reflective imaging system. In addition, the method can be employed to design an off-axis reflective imaging system consisting of multiple freeform surfaces with several virtual image points set in advance. In order to verify the DSCE method, three examples are given. One is the off-axis freeform one-mirror system, one is a compact off-axis three-mirror imaging system with two freeform surfaces, and the other is an off-axis reflective system with three freeform surfaces. The modulation transfer function (MTF) of the one-mirror system is greater than 0.9 at 20 lp/mm, which is close to the diffraction limit. The average of the sagittal and tangential MTFs of the second system designed by the SCE and DSCE methods are 0.26 and 0.74 at spatial frequency of 20 lp/mm, respectively. And the MTF of the last system designed by the DSCE method is greater than 0.9 at 20 lp/mm, which is better than that of the SCE method.
ISSN:1559-128X
2155-3165
DOI:10.1364/AO.411923