Loading…
Fatigue life prediction of 2524‐T3 and 7075‐T62 thin‐sheet aluminium alloy with an initial impact dent under block spectrum loading
This paper presents a fatigue life prediction model of post‐impacted sheets considering the effects of dent size and stress ratio. Low‐velocity impact tests at four different impact energies were performed on specimens cut from sheets of 2524‐T3 and 7075‐T62 aluminium alloy. Following the impact tes...
Saved in:
Published in: | Fatigue & fracture of engineering materials & structures 2021-04, Vol.44 (4), p.1096-1113 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3326-b364c7b33757eb4fd4a97af5af84be66eaac665a2de44c622aca12871734f0ee3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3326-b364c7b33757eb4fd4a97af5af84be66eaac665a2de44c622aca12871734f0ee3 |
container_end_page | 1113 |
container_issue | 4 |
container_start_page | 1096 |
container_title | Fatigue & fracture of engineering materials & structures |
container_volume | 44 |
creator | Chen, D. Cheng, Z.Q. Cunningham, P.R. Xiong, J.J. |
description | This paper presents a fatigue life prediction model of post‐impacted sheets considering the effects of dent size and stress ratio. Low‐velocity impact tests at four different impact energies were performed on specimens cut from sheets of 2524‐T3 and 7075‐T62 aluminium alloy. Following the impact tests, static tensile and uni‐axial constant amplitude and block spectrum fatigue experiments were conducted. Numerical models were generated to determine the initial residual stress patterns, residual stress relaxation, and stress concentration factors around the impact dent. The S‐N curves and corresponding stress concentration factors and relaxed residual stresses of three of the post‐impacted specimens were used to determine the model parameters. Good agreement was achieved between the predictions and experimental results, and it has been demonstrated that the fatigue life prediction model can effectively simulate the effects of residual stress, stress concentration, and stress ratio on fatigue damage for post‐impacted thin sheet aluminium alloy materials. |
doi_str_mv | 10.1111/ffe.13416 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2495157412</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2495157412</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3326-b364c7b33757eb4fd4a97af5af84be66eaac665a2de44c622aca12871734f0ee3</originalsourceid><addsrcrecordid>eNp1kL9OwzAQxi0EEqUw8AaWmBjSxv_TEVUtICGxFIktcpxz65ImwXFUdWNl4xl5ElzCyi333en33UkfQtcknZBYU2thQhgn8gSNCJdpQuVMnKJRpoRMlMhez9FF123TlEjO2Ah9LnVw6x5w5Szg1kPpTHBNjRuLqaD8--NrxbCuS6xSJY6TpDhsXB1ltwEIWFf9ztWu30VVNQe8d2ETDTjugtMVdrtWm4BLqAPu6xI8LqrGvOGuBRN8tFWNLl29vkRnVlcdXP31MXpZLlbzh-Tp-f5xfveUGMaoTAomuVEFY0ooKLgtuZ4pbYW2GS9AStDaSCk0LYFzIynVRhOaKaIYtykAG6Ob4W7rm_ceupBvm97X8WVO-UwQoTihkbodKOObrvNg89a7nfaHnKT5Mek8Jp3_Jh3Z6cDuXQWH_8F8uVwMjh9tUoKh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2495157412</pqid></control><display><type>article</type><title>Fatigue life prediction of 2524‐T3 and 7075‐T62 thin‐sheet aluminium alloy with an initial impact dent under block spectrum loading</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Chen, D. ; Cheng, Z.Q. ; Cunningham, P.R. ; Xiong, J.J.</creator><creatorcontrib>Chen, D. ; Cheng, Z.Q. ; Cunningham, P.R. ; Xiong, J.J.</creatorcontrib><description>This paper presents a fatigue life prediction model of post‐impacted sheets considering the effects of dent size and stress ratio. Low‐velocity impact tests at four different impact energies were performed on specimens cut from sheets of 2524‐T3 and 7075‐T62 aluminium alloy. Following the impact tests, static tensile and uni‐axial constant amplitude and block spectrum fatigue experiments were conducted. Numerical models were generated to determine the initial residual stress patterns, residual stress relaxation, and stress concentration factors around the impact dent. The S‐N curves and corresponding stress concentration factors and relaxed residual stresses of three of the post‐impacted specimens were used to determine the model parameters. Good agreement was achieved between the predictions and experimental results, and it has been demonstrated that the fatigue life prediction model can effectively simulate the effects of residual stress, stress concentration, and stress ratio on fatigue damage for post‐impacted thin sheet aluminium alloy materials.</description><identifier>ISSN: 8756-758X</identifier><identifier>EISSN: 1460-2695</identifier><identifier>DOI: 10.1111/ffe.13416</identifier><language>eng</language><publisher>Oxford: Wiley Subscription Services, Inc</publisher><subject>aluminium‐alloy sheet ; Aluminum base alloys ; block spectrum loading ; Fatigue failure ; Fatigue life ; fatigue life prediction ; Impact damage ; Impact tests ; Life prediction ; low‐velocity impact ; Numerical models ; Prediction models ; Residual stress ; Sheets ; Spectrum loading ; Stress concentration ; Stress ratio ; Stress relaxation</subject><ispartof>Fatigue & fracture of engineering materials & structures, 2021-04, Vol.44 (4), p.1096-1113</ispartof><rights>2021 The Authors. Fatigue & Fracture of Engineering Materials & Structures published by John Wiley & Sons Ltd.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3326-b364c7b33757eb4fd4a97af5af84be66eaac665a2de44c622aca12871734f0ee3</citedby><cites>FETCH-LOGICAL-c3326-b364c7b33757eb4fd4a97af5af84be66eaac665a2de44c622aca12871734f0ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Chen, D.</creatorcontrib><creatorcontrib>Cheng, Z.Q.</creatorcontrib><creatorcontrib>Cunningham, P.R.</creatorcontrib><creatorcontrib>Xiong, J.J.</creatorcontrib><title>Fatigue life prediction of 2524‐T3 and 7075‐T62 thin‐sheet aluminium alloy with an initial impact dent under block spectrum loading</title><title>Fatigue & fracture of engineering materials & structures</title><description>This paper presents a fatigue life prediction model of post‐impacted sheets considering the effects of dent size and stress ratio. Low‐velocity impact tests at four different impact energies were performed on specimens cut from sheets of 2524‐T3 and 7075‐T62 aluminium alloy. Following the impact tests, static tensile and uni‐axial constant amplitude and block spectrum fatigue experiments were conducted. Numerical models were generated to determine the initial residual stress patterns, residual stress relaxation, and stress concentration factors around the impact dent. The S‐N curves and corresponding stress concentration factors and relaxed residual stresses of three of the post‐impacted specimens were used to determine the model parameters. Good agreement was achieved between the predictions and experimental results, and it has been demonstrated that the fatigue life prediction model can effectively simulate the effects of residual stress, stress concentration, and stress ratio on fatigue damage for post‐impacted thin sheet aluminium alloy materials.</description><subject>aluminium‐alloy sheet</subject><subject>Aluminum base alloys</subject><subject>block spectrum loading</subject><subject>Fatigue failure</subject><subject>Fatigue life</subject><subject>fatigue life prediction</subject><subject>Impact damage</subject><subject>Impact tests</subject><subject>Life prediction</subject><subject>low‐velocity impact</subject><subject>Numerical models</subject><subject>Prediction models</subject><subject>Residual stress</subject><subject>Sheets</subject><subject>Spectrum loading</subject><subject>Stress concentration</subject><subject>Stress ratio</subject><subject>Stress relaxation</subject><issn>8756-758X</issn><issn>1460-2695</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kL9OwzAQxi0EEqUw8AaWmBjSxv_TEVUtICGxFIktcpxz65ImwXFUdWNl4xl5ElzCyi333en33UkfQtcknZBYU2thQhgn8gSNCJdpQuVMnKJRpoRMlMhez9FF123TlEjO2Ah9LnVw6x5w5Szg1kPpTHBNjRuLqaD8--NrxbCuS6xSJY6TpDhsXB1ltwEIWFf9ztWu30VVNQe8d2ETDTjugtMVdrtWm4BLqAPu6xI8LqrGvOGuBRN8tFWNLl29vkRnVlcdXP31MXpZLlbzh-Tp-f5xfveUGMaoTAomuVEFY0ooKLgtuZ4pbYW2GS9AStDaSCk0LYFzIynVRhOaKaIYtykAG6Ob4W7rm_ceupBvm97X8WVO-UwQoTihkbodKOObrvNg89a7nfaHnKT5Mek8Jp3_Jh3Z6cDuXQWH_8F8uVwMjh9tUoKh</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Chen, D.</creator><creator>Cheng, Z.Q.</creator><creator>Cunningham, P.R.</creator><creator>Xiong, J.J.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>202104</creationdate><title>Fatigue life prediction of 2524‐T3 and 7075‐T62 thin‐sheet aluminium alloy with an initial impact dent under block spectrum loading</title><author>Chen, D. ; Cheng, Z.Q. ; Cunningham, P.R. ; Xiong, J.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3326-b364c7b33757eb4fd4a97af5af84be66eaac665a2de44c622aca12871734f0ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>aluminium‐alloy sheet</topic><topic>Aluminum base alloys</topic><topic>block spectrum loading</topic><topic>Fatigue failure</topic><topic>Fatigue life</topic><topic>fatigue life prediction</topic><topic>Impact damage</topic><topic>Impact tests</topic><topic>Life prediction</topic><topic>low‐velocity impact</topic><topic>Numerical models</topic><topic>Prediction models</topic><topic>Residual stress</topic><topic>Sheets</topic><topic>Spectrum loading</topic><topic>Stress concentration</topic><topic>Stress ratio</topic><topic>Stress relaxation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, D.</creatorcontrib><creatorcontrib>Cheng, Z.Q.</creatorcontrib><creatorcontrib>Cunningham, P.R.</creatorcontrib><creatorcontrib>Xiong, J.J.</creatorcontrib><collection>Wiley-Blackwell Open Access Titles(OpenAccess)</collection><collection>Wiley-Blackwell Open Access Backfiles</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Fatigue & fracture of engineering materials & structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, D.</au><au>Cheng, Z.Q.</au><au>Cunningham, P.R.</au><au>Xiong, J.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fatigue life prediction of 2524‐T3 and 7075‐T62 thin‐sheet aluminium alloy with an initial impact dent under block spectrum loading</atitle><jtitle>Fatigue & fracture of engineering materials & structures</jtitle><date>2021-04</date><risdate>2021</risdate><volume>44</volume><issue>4</issue><spage>1096</spage><epage>1113</epage><pages>1096-1113</pages><issn>8756-758X</issn><eissn>1460-2695</eissn><abstract>This paper presents a fatigue life prediction model of post‐impacted sheets considering the effects of dent size and stress ratio. Low‐velocity impact tests at four different impact energies were performed on specimens cut from sheets of 2524‐T3 and 7075‐T62 aluminium alloy. Following the impact tests, static tensile and uni‐axial constant amplitude and block spectrum fatigue experiments were conducted. Numerical models were generated to determine the initial residual stress patterns, residual stress relaxation, and stress concentration factors around the impact dent. The S‐N curves and corresponding stress concentration factors and relaxed residual stresses of three of the post‐impacted specimens were used to determine the model parameters. Good agreement was achieved between the predictions and experimental results, and it has been demonstrated that the fatigue life prediction model can effectively simulate the effects of residual stress, stress concentration, and stress ratio on fatigue damage for post‐impacted thin sheet aluminium alloy materials.</abstract><cop>Oxford</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/ffe.13416</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 8756-758X |
ispartof | Fatigue & fracture of engineering materials & structures, 2021-04, Vol.44 (4), p.1096-1113 |
issn | 8756-758X 1460-2695 |
language | eng |
recordid | cdi_proquest_journals_2495157412 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | aluminium‐alloy sheet Aluminum base alloys block spectrum loading Fatigue failure Fatigue life fatigue life prediction Impact damage Impact tests Life prediction low‐velocity impact Numerical models Prediction models Residual stress Sheets Spectrum loading Stress concentration Stress ratio Stress relaxation |
title | Fatigue life prediction of 2524‐T3 and 7075‐T62 thin‐sheet aluminium alloy with an initial impact dent under block spectrum loading |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A34%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fatigue%20life%20prediction%20of%202524%E2%80%90T3%20and%207075%E2%80%90T62%20thin%E2%80%90sheet%20aluminium%20alloy%20with%20an%20initial%20impact%20dent%20under%20block%20spectrum%20loading&rft.jtitle=Fatigue%20&%20fracture%20of%20engineering%20materials%20&%20structures&rft.au=Chen,%20D.&rft.date=2021-04&rft.volume=44&rft.issue=4&rft.spage=1096&rft.epage=1113&rft.pages=1096-1113&rft.issn=8756-758X&rft.eissn=1460-2695&rft_id=info:doi/10.1111/ffe.13416&rft_dat=%3Cproquest_cross%3E2495157412%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3326-b364c7b33757eb4fd4a97af5af84be66eaac665a2de44c622aca12871734f0ee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2495157412&rft_id=info:pmid/&rfr_iscdi=true |