Loading…

Fatigue life prediction of 2524‐T3 and 7075‐T62 thin‐sheet aluminium alloy with an initial impact dent under block spectrum loading

This paper presents a fatigue life prediction model of post‐impacted sheets considering the effects of dent size and stress ratio. Low‐velocity impact tests at four different impact energies were performed on specimens cut from sheets of 2524‐T3 and 7075‐T62 aluminium alloy. Following the impact tes...

Full description

Saved in:
Bibliographic Details
Published in:Fatigue & fracture of engineering materials & structures 2021-04, Vol.44 (4), p.1096-1113
Main Authors: Chen, D., Cheng, Z.Q., Cunningham, P.R., Xiong, J.J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3326-b364c7b33757eb4fd4a97af5af84be66eaac665a2de44c622aca12871734f0ee3
cites cdi_FETCH-LOGICAL-c3326-b364c7b33757eb4fd4a97af5af84be66eaac665a2de44c622aca12871734f0ee3
container_end_page 1113
container_issue 4
container_start_page 1096
container_title Fatigue & fracture of engineering materials & structures
container_volume 44
creator Chen, D.
Cheng, Z.Q.
Cunningham, P.R.
Xiong, J.J.
description This paper presents a fatigue life prediction model of post‐impacted sheets considering the effects of dent size and stress ratio. Low‐velocity impact tests at four different impact energies were performed on specimens cut from sheets of 2524‐T3 and 7075‐T62 aluminium alloy. Following the impact tests, static tensile and uni‐axial constant amplitude and block spectrum fatigue experiments were conducted. Numerical models were generated to determine the initial residual stress patterns, residual stress relaxation, and stress concentration factors around the impact dent. The S‐N curves and corresponding stress concentration factors and relaxed residual stresses of three of the post‐impacted specimens were used to determine the model parameters. Good agreement was achieved between the predictions and experimental results, and it has been demonstrated that the fatigue life prediction model can effectively simulate the effects of residual stress, stress concentration, and stress ratio on fatigue damage for post‐impacted thin sheet aluminium alloy materials.
doi_str_mv 10.1111/ffe.13416
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2495157412</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2495157412</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3326-b364c7b33757eb4fd4a97af5af84be66eaac665a2de44c622aca12871734f0ee3</originalsourceid><addsrcrecordid>eNp1kL9OwzAQxi0EEqUw8AaWmBjSxv_TEVUtICGxFIktcpxz65ImwXFUdWNl4xl5ElzCyi333en33UkfQtcknZBYU2thQhgn8gSNCJdpQuVMnKJRpoRMlMhez9FF123TlEjO2Ah9LnVw6x5w5Szg1kPpTHBNjRuLqaD8--NrxbCuS6xSJY6TpDhsXB1ltwEIWFf9ztWu30VVNQe8d2ETDTjugtMVdrtWm4BLqAPu6xI8LqrGvOGuBRN8tFWNLl29vkRnVlcdXP31MXpZLlbzh-Tp-f5xfveUGMaoTAomuVEFY0ooKLgtuZ4pbYW2GS9AStDaSCk0LYFzIynVRhOaKaIYtykAG6Ob4W7rm_ceupBvm97X8WVO-UwQoTihkbodKOObrvNg89a7nfaHnKT5Mek8Jp3_Jh3Z6cDuXQWH_8F8uVwMjh9tUoKh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2495157412</pqid></control><display><type>article</type><title>Fatigue life prediction of 2524‐T3 and 7075‐T62 thin‐sheet aluminium alloy with an initial impact dent under block spectrum loading</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Chen, D. ; Cheng, Z.Q. ; Cunningham, P.R. ; Xiong, J.J.</creator><creatorcontrib>Chen, D. ; Cheng, Z.Q. ; Cunningham, P.R. ; Xiong, J.J.</creatorcontrib><description>This paper presents a fatigue life prediction model of post‐impacted sheets considering the effects of dent size and stress ratio. Low‐velocity impact tests at four different impact energies were performed on specimens cut from sheets of 2524‐T3 and 7075‐T62 aluminium alloy. Following the impact tests, static tensile and uni‐axial constant amplitude and block spectrum fatigue experiments were conducted. Numerical models were generated to determine the initial residual stress patterns, residual stress relaxation, and stress concentration factors around the impact dent. The S‐N curves and corresponding stress concentration factors and relaxed residual stresses of three of the post‐impacted specimens were used to determine the model parameters. Good agreement was achieved between the predictions and experimental results, and it has been demonstrated that the fatigue life prediction model can effectively simulate the effects of residual stress, stress concentration, and stress ratio on fatigue damage for post‐impacted thin sheet aluminium alloy materials.</description><identifier>ISSN: 8756-758X</identifier><identifier>EISSN: 1460-2695</identifier><identifier>DOI: 10.1111/ffe.13416</identifier><language>eng</language><publisher>Oxford: Wiley Subscription Services, Inc</publisher><subject>aluminium‐alloy sheet ; Aluminum base alloys ; block spectrum loading ; Fatigue failure ; Fatigue life ; fatigue life prediction ; Impact damage ; Impact tests ; Life prediction ; low‐velocity impact ; Numerical models ; Prediction models ; Residual stress ; Sheets ; Spectrum loading ; Stress concentration ; Stress ratio ; Stress relaxation</subject><ispartof>Fatigue &amp; fracture of engineering materials &amp; structures, 2021-04, Vol.44 (4), p.1096-1113</ispartof><rights>2021 The Authors. Fatigue &amp; Fracture of Engineering Materials &amp; Structures published by John Wiley &amp; Sons Ltd.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3326-b364c7b33757eb4fd4a97af5af84be66eaac665a2de44c622aca12871734f0ee3</citedby><cites>FETCH-LOGICAL-c3326-b364c7b33757eb4fd4a97af5af84be66eaac665a2de44c622aca12871734f0ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Chen, D.</creatorcontrib><creatorcontrib>Cheng, Z.Q.</creatorcontrib><creatorcontrib>Cunningham, P.R.</creatorcontrib><creatorcontrib>Xiong, J.J.</creatorcontrib><title>Fatigue life prediction of 2524‐T3 and 7075‐T62 thin‐sheet aluminium alloy with an initial impact dent under block spectrum loading</title><title>Fatigue &amp; fracture of engineering materials &amp; structures</title><description>This paper presents a fatigue life prediction model of post‐impacted sheets considering the effects of dent size and stress ratio. Low‐velocity impact tests at four different impact energies were performed on specimens cut from sheets of 2524‐T3 and 7075‐T62 aluminium alloy. Following the impact tests, static tensile and uni‐axial constant amplitude and block spectrum fatigue experiments were conducted. Numerical models were generated to determine the initial residual stress patterns, residual stress relaxation, and stress concentration factors around the impact dent. The S‐N curves and corresponding stress concentration factors and relaxed residual stresses of three of the post‐impacted specimens were used to determine the model parameters. Good agreement was achieved between the predictions and experimental results, and it has been demonstrated that the fatigue life prediction model can effectively simulate the effects of residual stress, stress concentration, and stress ratio on fatigue damage for post‐impacted thin sheet aluminium alloy materials.</description><subject>aluminium‐alloy sheet</subject><subject>Aluminum base alloys</subject><subject>block spectrum loading</subject><subject>Fatigue failure</subject><subject>Fatigue life</subject><subject>fatigue life prediction</subject><subject>Impact damage</subject><subject>Impact tests</subject><subject>Life prediction</subject><subject>low‐velocity impact</subject><subject>Numerical models</subject><subject>Prediction models</subject><subject>Residual stress</subject><subject>Sheets</subject><subject>Spectrum loading</subject><subject>Stress concentration</subject><subject>Stress ratio</subject><subject>Stress relaxation</subject><issn>8756-758X</issn><issn>1460-2695</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kL9OwzAQxi0EEqUw8AaWmBjSxv_TEVUtICGxFIktcpxz65ImwXFUdWNl4xl5ElzCyi333en33UkfQtcknZBYU2thQhgn8gSNCJdpQuVMnKJRpoRMlMhez9FF123TlEjO2Ah9LnVw6x5w5Szg1kPpTHBNjRuLqaD8--NrxbCuS6xSJY6TpDhsXB1ltwEIWFf9ztWu30VVNQe8d2ETDTjugtMVdrtWm4BLqAPu6xI8LqrGvOGuBRN8tFWNLl29vkRnVlcdXP31MXpZLlbzh-Tp-f5xfveUGMaoTAomuVEFY0ooKLgtuZ4pbYW2GS9AStDaSCk0LYFzIynVRhOaKaIYtykAG6Ob4W7rm_ceupBvm97X8WVO-UwQoTihkbodKOObrvNg89a7nfaHnKT5Mek8Jp3_Jh3Z6cDuXQWH_8F8uVwMjh9tUoKh</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Chen, D.</creator><creator>Cheng, Z.Q.</creator><creator>Cunningham, P.R.</creator><creator>Xiong, J.J.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>202104</creationdate><title>Fatigue life prediction of 2524‐T3 and 7075‐T62 thin‐sheet aluminium alloy with an initial impact dent under block spectrum loading</title><author>Chen, D. ; Cheng, Z.Q. ; Cunningham, P.R. ; Xiong, J.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3326-b364c7b33757eb4fd4a97af5af84be66eaac665a2de44c622aca12871734f0ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>aluminium‐alloy sheet</topic><topic>Aluminum base alloys</topic><topic>block spectrum loading</topic><topic>Fatigue failure</topic><topic>Fatigue life</topic><topic>fatigue life prediction</topic><topic>Impact damage</topic><topic>Impact tests</topic><topic>Life prediction</topic><topic>low‐velocity impact</topic><topic>Numerical models</topic><topic>Prediction models</topic><topic>Residual stress</topic><topic>Sheets</topic><topic>Spectrum loading</topic><topic>Stress concentration</topic><topic>Stress ratio</topic><topic>Stress relaxation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, D.</creatorcontrib><creatorcontrib>Cheng, Z.Q.</creatorcontrib><creatorcontrib>Cunningham, P.R.</creatorcontrib><creatorcontrib>Xiong, J.J.</creatorcontrib><collection>Wiley-Blackwell Open Access Titles(OpenAccess)</collection><collection>Wiley-Blackwell Open Access Backfiles</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Fatigue &amp; fracture of engineering materials &amp; structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, D.</au><au>Cheng, Z.Q.</au><au>Cunningham, P.R.</au><au>Xiong, J.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fatigue life prediction of 2524‐T3 and 7075‐T62 thin‐sheet aluminium alloy with an initial impact dent under block spectrum loading</atitle><jtitle>Fatigue &amp; fracture of engineering materials &amp; structures</jtitle><date>2021-04</date><risdate>2021</risdate><volume>44</volume><issue>4</issue><spage>1096</spage><epage>1113</epage><pages>1096-1113</pages><issn>8756-758X</issn><eissn>1460-2695</eissn><abstract>This paper presents a fatigue life prediction model of post‐impacted sheets considering the effects of dent size and stress ratio. Low‐velocity impact tests at four different impact energies were performed on specimens cut from sheets of 2524‐T3 and 7075‐T62 aluminium alloy. Following the impact tests, static tensile and uni‐axial constant amplitude and block spectrum fatigue experiments were conducted. Numerical models were generated to determine the initial residual stress patterns, residual stress relaxation, and stress concentration factors around the impact dent. The S‐N curves and corresponding stress concentration factors and relaxed residual stresses of three of the post‐impacted specimens were used to determine the model parameters. Good agreement was achieved between the predictions and experimental results, and it has been demonstrated that the fatigue life prediction model can effectively simulate the effects of residual stress, stress concentration, and stress ratio on fatigue damage for post‐impacted thin sheet aluminium alloy materials.</abstract><cop>Oxford</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/ffe.13416</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 8756-758X
ispartof Fatigue & fracture of engineering materials & structures, 2021-04, Vol.44 (4), p.1096-1113
issn 8756-758X
1460-2695
language eng
recordid cdi_proquest_journals_2495157412
source Wiley-Blackwell Read & Publish Collection
subjects aluminium‐alloy sheet
Aluminum base alloys
block spectrum loading
Fatigue failure
Fatigue life
fatigue life prediction
Impact damage
Impact tests
Life prediction
low‐velocity impact
Numerical models
Prediction models
Residual stress
Sheets
Spectrum loading
Stress concentration
Stress ratio
Stress relaxation
title Fatigue life prediction of 2524‐T3 and 7075‐T62 thin‐sheet aluminium alloy with an initial impact dent under block spectrum loading
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A34%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fatigue%20life%20prediction%20of%202524%E2%80%90T3%20and%207075%E2%80%90T62%20thin%E2%80%90sheet%20aluminium%20alloy%20with%20an%20initial%20impact%20dent%20under%20block%20spectrum%20loading&rft.jtitle=Fatigue%20&%20fracture%20of%20engineering%20materials%20&%20structures&rft.au=Chen,%20D.&rft.date=2021-04&rft.volume=44&rft.issue=4&rft.spage=1096&rft.epage=1113&rft.pages=1096-1113&rft.issn=8756-758X&rft.eissn=1460-2695&rft_id=info:doi/10.1111/ffe.13416&rft_dat=%3Cproquest_cross%3E2495157412%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3326-b364c7b33757eb4fd4a97af5af84be66eaac665a2de44c622aca12871734f0ee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2495157412&rft_id=info:pmid/&rfr_iscdi=true