Loading…

Mechanical and thermal properties of polymethylmethacrylate bone cement composites incorporated with hydroxyapatite and glass-ceramic fillers

A new bioactive glass‐ceramic based on the Na2OCaOSiO2P2O5 glass system was used as bioactive filler in commercial polymethylmethacrylate (PMMA) bone cement; (PALACOS® LV). The results of this newly fabricated glass‐ceramic were compared with those of hydroxyapatite (HA) filler. PMMA bone cement...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied polymer science 2012-07, Vol.125 (S1), p.E661-E669
Main Authors: Hamizah, A. S., Mariatti, M., Othman, R., Kawashita, M., Noor Hayati, A. R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3355-f2197d31c7882b5c1febca51f1ad51a6f0383b2eb84811d6123695304ba9e013
cites cdi_FETCH-LOGICAL-c3355-f2197d31c7882b5c1febca51f1ad51a6f0383b2eb84811d6123695304ba9e013
container_end_page E669
container_issue S1
container_start_page E661
container_title Journal of applied polymer science
container_volume 125
creator Hamizah, A. S.
Mariatti, M.
Othman, R.
Kawashita, M.
Noor Hayati, A. R.
description A new bioactive glass‐ceramic based on the Na2OCaOSiO2P2O5 glass system was used as bioactive filler in commercial polymethylmethacrylate (PMMA) bone cement; (PALACOS® LV). The results of this newly fabricated glass‐ceramic were compared with those of hydroxyapatite (HA) filler. PMMA bone cement containing 0, 4, 8, 12, or 16 wt % glass‐ceramic and HA were prepared. The effects of bioactive fillers and different filler loadings on mechanical and thermal properties were evaluated. Results show that flexural strength decreased, while flexural modulus increased as filler loading was amplified. Fracture toughness was also observed. Results of thermogravimetric analysis indicate that the thermal stability of the cement composites increased with increasing glass‐ceramic and HA contents. Dynamic mechanical analysis shows that the addition of glass‐ceramic fillers resulted in an increase in storage modulus and Tg. Apatite morphology was observed on the surface of the glass‐ceramic, GCBC4, and GCBC8 after a bioactivity test. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012
doi_str_mv 10.1002/app.35295
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2495238297</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2495238297</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3355-f2197d31c7882b5c1febca51f1ad51a6f0383b2eb84811d6123695304ba9e013</originalsourceid><addsrcrecordid>eNp1kM1O3TAQha2qlXpLu-gbWGLFIuCf6yReIkRpy0-RQKp0N5bjTIjBiV3bCPIQfWcMF7rrZmak-c4czUHoKyX7lBB2oEPY54JJ8Q6tKJFNta5Z-x6tyo5WrZTiI_qU0i0hlApSr9DfczCjnq3RDuu5x3mEOJU5RB8gZgsJ-wEH75YJ8ri456pNXJzOgDs_AzYwwZyx8VPwyeYisLPxMfhYkB4_2Dzicemjf1x00LkQL0Y3TqdUGYh6sgYP1jmI6TP6MGiX4Mtr30HX346vj75XZ79OfhwdnlWGcyGqgVHZ9Jyapm1ZJwwdoDNa0IHqXlBdD4S3vGPQteuW0r6mjNdScLLutARC-Q7a3Z4tX_65h5TVrb-Pc3FUbC0F4y2TTaH2tpSJPqUIgwrRTjouihL1HLYqYauXsAt7sGUfrIPl_6A6vLx8U1RbhU0ZHv8pdLxTdcMboX5fnKjT5udmc3W1URf8CQvSlCU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2495238297</pqid></control><display><type>article</type><title>Mechanical and thermal properties of polymethylmethacrylate bone cement composites incorporated with hydroxyapatite and glass-ceramic fillers</title><source>Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)</source><creator>Hamizah, A. S. ; Mariatti, M. ; Othman, R. ; Kawashita, M. ; Noor Hayati, A. R.</creator><creatorcontrib>Hamizah, A. S. ; Mariatti, M. ; Othman, R. ; Kawashita, M. ; Noor Hayati, A. R.</creatorcontrib><description>A new bioactive glass‐ceramic based on the Na2OCaOSiO2P2O5 glass system was used as bioactive filler in commercial polymethylmethacrylate (PMMA) bone cement; (PALACOS® LV). The results of this newly fabricated glass‐ceramic were compared with those of hydroxyapatite (HA) filler. PMMA bone cement containing 0, 4, 8, 12, or 16 wt % glass‐ceramic and HA were prepared. The effects of bioactive fillers and different filler loadings on mechanical and thermal properties were evaluated. Results show that flexural strength decreased, while flexural modulus increased as filler loading was amplified. Fracture toughness was also observed. Results of thermogravimetric analysis indicate that the thermal stability of the cement composites increased with increasing glass‐ceramic and HA contents. Dynamic mechanical analysis shows that the addition of glass‐ceramic fillers resulted in an increase in storage modulus and Tg. Apatite morphology was observed on the surface of the glass‐ceramic, GCBC4, and GCBC8 after a bioactivity test. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012</description><identifier>ISSN: 0021-8995</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.35295</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Apatite ; Bioglass ; Biological activity ; biomaterials ; Biomedical materials ; Bone cements ; Ceramics ; Composite materials ; composites ; Dynamic mechanical analysis ; filler ; Fillers ; Flexural strength ; Fracture toughness ; Hydroxyapatite ; Materials science ; Modulus of rupture in bending ; Morphology ; Phosphorus pentoxide ; Polymers ; Polymethyl methacrylate ; Silicon dioxide ; Stability analysis ; Storage modulus ; thermal properties ; Thermal stability ; Thermodynamic properties ; Thermogravimetric analysis</subject><ispartof>Journal of applied polymer science, 2012-07, Vol.125 (S1), p.E661-E669</ispartof><rights>Copyright © 2012 Wiley Periodicals, Inc.</rights><rights>Copyright Wiley Subscription Services, Inc. Jul 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3355-f2197d31c7882b5c1febca51f1ad51a6f0383b2eb84811d6123695304ba9e013</citedby><cites>FETCH-LOGICAL-c3355-f2197d31c7882b5c1febca51f1ad51a6f0383b2eb84811d6123695304ba9e013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hamizah, A. S.</creatorcontrib><creatorcontrib>Mariatti, M.</creatorcontrib><creatorcontrib>Othman, R.</creatorcontrib><creatorcontrib>Kawashita, M.</creatorcontrib><creatorcontrib>Noor Hayati, A. R.</creatorcontrib><title>Mechanical and thermal properties of polymethylmethacrylate bone cement composites incorporated with hydroxyapatite and glass-ceramic fillers</title><title>Journal of applied polymer science</title><addtitle>J. Appl. Polym. Sci</addtitle><description>A new bioactive glass‐ceramic based on the Na2OCaOSiO2P2O5 glass system was used as bioactive filler in commercial polymethylmethacrylate (PMMA) bone cement; (PALACOS® LV). The results of this newly fabricated glass‐ceramic were compared with those of hydroxyapatite (HA) filler. PMMA bone cement containing 0, 4, 8, 12, or 16 wt % glass‐ceramic and HA were prepared. The effects of bioactive fillers and different filler loadings on mechanical and thermal properties were evaluated. Results show that flexural strength decreased, while flexural modulus increased as filler loading was amplified. Fracture toughness was also observed. Results of thermogravimetric analysis indicate that the thermal stability of the cement composites increased with increasing glass‐ceramic and HA contents. Dynamic mechanical analysis shows that the addition of glass‐ceramic fillers resulted in an increase in storage modulus and Tg. Apatite morphology was observed on the surface of the glass‐ceramic, GCBC4, and GCBC8 after a bioactivity test. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012</description><subject>Apatite</subject><subject>Bioglass</subject><subject>Biological activity</subject><subject>biomaterials</subject><subject>Biomedical materials</subject><subject>Bone cements</subject><subject>Ceramics</subject><subject>Composite materials</subject><subject>composites</subject><subject>Dynamic mechanical analysis</subject><subject>filler</subject><subject>Fillers</subject><subject>Flexural strength</subject><subject>Fracture toughness</subject><subject>Hydroxyapatite</subject><subject>Materials science</subject><subject>Modulus of rupture in bending</subject><subject>Morphology</subject><subject>Phosphorus pentoxide</subject><subject>Polymers</subject><subject>Polymethyl methacrylate</subject><subject>Silicon dioxide</subject><subject>Stability analysis</subject><subject>Storage modulus</subject><subject>thermal properties</subject><subject>Thermal stability</subject><subject>Thermodynamic properties</subject><subject>Thermogravimetric analysis</subject><issn>0021-8995</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp1kM1O3TAQha2qlXpLu-gbWGLFIuCf6yReIkRpy0-RQKp0N5bjTIjBiV3bCPIQfWcMF7rrZmak-c4czUHoKyX7lBB2oEPY54JJ8Q6tKJFNta5Z-x6tyo5WrZTiI_qU0i0hlApSr9DfczCjnq3RDuu5x3mEOJU5RB8gZgsJ-wEH75YJ8ri456pNXJzOgDs_AzYwwZyx8VPwyeYisLPxMfhYkB4_2Dzicemjf1x00LkQL0Y3TqdUGYh6sgYP1jmI6TP6MGiX4Mtr30HX346vj75XZ79OfhwdnlWGcyGqgVHZ9Jyapm1ZJwwdoDNa0IHqXlBdD4S3vGPQteuW0r6mjNdScLLutARC-Q7a3Z4tX_65h5TVrb-Pc3FUbC0F4y2TTaH2tpSJPqUIgwrRTjouihL1HLYqYauXsAt7sGUfrIPl_6A6vLx8U1RbhU0ZHv8pdLxTdcMboX5fnKjT5udmc3W1URf8CQvSlCU</recordid><startdate>20120725</startdate><enddate>20120725</enddate><creator>Hamizah, A. S.</creator><creator>Mariatti, M.</creator><creator>Othman, R.</creator><creator>Kawashita, M.</creator><creator>Noor Hayati, A. R.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20120725</creationdate><title>Mechanical and thermal properties of polymethylmethacrylate bone cement composites incorporated with hydroxyapatite and glass-ceramic fillers</title><author>Hamizah, A. S. ; Mariatti, M. ; Othman, R. ; Kawashita, M. ; Noor Hayati, A. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3355-f2197d31c7882b5c1febca51f1ad51a6f0383b2eb84811d6123695304ba9e013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Apatite</topic><topic>Bioglass</topic><topic>Biological activity</topic><topic>biomaterials</topic><topic>Biomedical materials</topic><topic>Bone cements</topic><topic>Ceramics</topic><topic>Composite materials</topic><topic>composites</topic><topic>Dynamic mechanical analysis</topic><topic>filler</topic><topic>Fillers</topic><topic>Flexural strength</topic><topic>Fracture toughness</topic><topic>Hydroxyapatite</topic><topic>Materials science</topic><topic>Modulus of rupture in bending</topic><topic>Morphology</topic><topic>Phosphorus pentoxide</topic><topic>Polymers</topic><topic>Polymethyl methacrylate</topic><topic>Silicon dioxide</topic><topic>Stability analysis</topic><topic>Storage modulus</topic><topic>thermal properties</topic><topic>Thermal stability</topic><topic>Thermodynamic properties</topic><topic>Thermogravimetric analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hamizah, A. S.</creatorcontrib><creatorcontrib>Mariatti, M.</creatorcontrib><creatorcontrib>Othman, R.</creatorcontrib><creatorcontrib>Kawashita, M.</creatorcontrib><creatorcontrib>Noor Hayati, A. R.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hamizah, A. S.</au><au>Mariatti, M.</au><au>Othman, R.</au><au>Kawashita, M.</au><au>Noor Hayati, A. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical and thermal properties of polymethylmethacrylate bone cement composites incorporated with hydroxyapatite and glass-ceramic fillers</atitle><jtitle>Journal of applied polymer science</jtitle><addtitle>J. Appl. Polym. Sci</addtitle><date>2012-07-25</date><risdate>2012</risdate><volume>125</volume><issue>S1</issue><spage>E661</spage><epage>E669</epage><pages>E661-E669</pages><issn>0021-8995</issn><eissn>1097-4628</eissn><abstract>A new bioactive glass‐ceramic based on the Na2OCaOSiO2P2O5 glass system was used as bioactive filler in commercial polymethylmethacrylate (PMMA) bone cement; (PALACOS® LV). The results of this newly fabricated glass‐ceramic were compared with those of hydroxyapatite (HA) filler. PMMA bone cement containing 0, 4, 8, 12, or 16 wt % glass‐ceramic and HA were prepared. The effects of bioactive fillers and different filler loadings on mechanical and thermal properties were evaluated. Results show that flexural strength decreased, while flexural modulus increased as filler loading was amplified. Fracture toughness was also observed. Results of thermogravimetric analysis indicate that the thermal stability of the cement composites increased with increasing glass‐ceramic and HA contents. Dynamic mechanical analysis shows that the addition of glass‐ceramic fillers resulted in an increase in storage modulus and Tg. Apatite morphology was observed on the surface of the glass‐ceramic, GCBC4, and GCBC8 after a bioactivity test. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/app.35295</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8995
ispartof Journal of applied polymer science, 2012-07, Vol.125 (S1), p.E661-E669
issn 0021-8995
1097-4628
language eng
recordid cdi_proquest_journals_2495238297
source Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)
subjects Apatite
Bioglass
Biological activity
biomaterials
Biomedical materials
Bone cements
Ceramics
Composite materials
composites
Dynamic mechanical analysis
filler
Fillers
Flexural strength
Fracture toughness
Hydroxyapatite
Materials science
Modulus of rupture in bending
Morphology
Phosphorus pentoxide
Polymers
Polymethyl methacrylate
Silicon dioxide
Stability analysis
Storage modulus
thermal properties
Thermal stability
Thermodynamic properties
Thermogravimetric analysis
title Mechanical and thermal properties of polymethylmethacrylate bone cement composites incorporated with hydroxyapatite and glass-ceramic fillers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T01%3A22%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20and%20thermal%20properties%20of%20polymethylmethacrylate%20bone%20cement%20composites%20incorporated%20with%20hydroxyapatite%20and%20glass-ceramic%20fillers&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Hamizah,%20A.%20S.&rft.date=2012-07-25&rft.volume=125&rft.issue=S1&rft.spage=E661&rft.epage=E669&rft.pages=E661-E669&rft.issn=0021-8995&rft.eissn=1097-4628&rft_id=info:doi/10.1002/app.35295&rft_dat=%3Cproquest_cross%3E2495238297%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3355-f2197d31c7882b5c1febca51f1ad51a6f0383b2eb84811d6123695304ba9e013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2495238297&rft_id=info:pmid/&rfr_iscdi=true