Loading…

Direct Tensile Tests of Red Sandstone Under Different Loading Rates with the Self-developed Centering Device

To study the tensile strength of rock under different loading rates, direct tensile test is the most accurate method. However, the eccentric tension in the process of rock direct tensile test has a significant influence on the test results. In this paper, firstly, a self-developed centering device f...

Full description

Saved in:
Bibliographic Details
Published in:Geotechnical and geological engineering 2021-02, Vol.39 (2), p.709-718
Main Authors: Zhang, Yue, Zhang, Qiang-Yong, Zhou, Xin-Yu, Xiang, Wen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To study the tensile strength of rock under different loading rates, direct tensile test is the most accurate method. However, the eccentric tension in the process of rock direct tensile test has a significant influence on the test results. In this paper, firstly, a self-developed centering device for rock direct tensile test is introduced, which can effectively eliminate the eccentric tension in the process of rock direct tensile test. Then, with the aid of the self-developed centering device, the direct tensile tests of red sandstone under the loading rates of 0.001 mm/s, 0.01 mm/s and 0.1 mm/s are successfully carried out. After tests, both the macro failure characteristics and the scanning electron microscope micrograph show that the fracture pattern of the rock is caused by pure tensile loading. The stress-strain curves of the direct tensile test of the red sandstone show that the process of the direct tensile test can be roughly divided into four stages. With the increase of loading rate, both of the tensile strength and the peak tensile strain of the rock increase obviously. The direct tensile test of the red sandstone shows obvious loading rate effect.
ISSN:0960-3182
1573-1529
DOI:10.1007/s10706-020-01515-y