Loading…
Text structuring methods based on complex network: a systematic review
Currently, there is a large amount of text being shared through the Internet. These texts are available in different forms—structured, unstructured and semi structured. There are different ways of analyzing texts, but domain experts usually divide this process in some steps such as pre-processing, f...
Saved in:
Published in: | Scientometrics 2021-02, Vol.126 (2), p.1471-1493 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Currently, there is a large amount of text being shared through the Internet. These texts are available in different forms—structured, unstructured and semi structured. There are different ways of analyzing texts, but domain experts usually divide this process in some steps such as pre-processing, feature extraction and a final step that could be classification, clustering, summarization, and keyword extraction, depending on the purpose over the text. For this processing, several approaches have been proposed in the literature based on variations of methods like artificial neural network and deep learning. In this paper, we conducted a systematic review of papers dealing with the use of complex networks approaches for the process of analyzing text. The main results showed that complex network topological properties, measures and modeling can capture and identify text structures concerning different purposes such as text analysis, classification, topic and keyword extraction, and summarization. We conclude that complex network topological properties provide promising strategies with respect of processing texts, considering their different aspects and structures. |
---|---|
ISSN: | 0138-9130 1588-2861 |
DOI: | 10.1007/s11192-020-03785-y |