Loading…

Analysis of magnetic vortex dissipation in Sn-segregated boundaries in Nb3 Sn superconducting RF cavities

We study mechanisms of vortex nucleation in Nb3 Sn superconducting RF (SRF) cavities using a combination of experimental, theoretical, and computational methods. Scanning transmission electron microscopy imaging and energy dispersive spectroscopy of some Nb3 Sn cavities show Sn segregation at grain...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. B 2021-01, Vol.103 (2), p.024516
Main Authors: Carlson, Jared, Pack, Alden, Transtrum, Mark K, Lee, Jaeyel, Seidman, David N, Liarte, Danilo B, Sitaraman, Nathan S, Senanian, Alen, Kelley, Michelle M, Sethna, James P, Arias, Tomas, Posen, Sam
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 2
container_start_page 024516
container_title Physical review. B
container_volume 103
creator Carlson, Jared
Pack, Alden
Transtrum, Mark K
Lee, Jaeyel
Seidman, David N
Liarte, Danilo B
Sitaraman, Nathan S
Senanian, Alen
Kelley, Michelle M
Sethna, James P
Arias, Tomas
Posen, Sam
description We study mechanisms of vortex nucleation in Nb3 Sn superconducting RF (SRF) cavities using a combination of experimental, theoretical, and computational methods. Scanning transmission electron microscopy imaging and energy dispersive spectroscopy of some Nb3 Sn cavities show Sn segregation at grain boundaries in Nb3 Sn with Sn concentration as high as ∼ 35 at. % and widths ∼ 3 nm in chemical composition. Using ab initio calculations, we estimate the effect excess tin has on the local superconducting properties of the material. We model Sn segregation as a lowering of the local critical temperature. We then use time-dependent Ginzburg-Landau theory to understand the role of segregation on magnetic vortex nucleation. Our simulations indicate that the grain boundaries act as both nucleation sites for vortex penetration and pinning sites for vortices after nucleation. Depending on the magnitude of the applied field, vortices may remain pinned in the grain boundary or penetrate the grain itself. We estimate the superconducting losses due to vortices filling grain boundaries and compare with observed performance degradation with higher magnetic fields. We estimate that the quality factor may decrease by an order of magnitude (1010 to 109) at typical operating fields if 0.03% of the grain boundaries actively nucleate vortices. We additionally estimate the volume that would need to be filled with vortices to match experimental observations of cavity heating.
doi_str_mv 10.1103/PhysRevB.103.024516
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2496357579</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2496357579</sourcerecordid><originalsourceid>FETCH-proquest_journals_24963575793</originalsourceid><addsrcrecordid>eNqNjk1LAzEURYMoWLS_wM0D1zMm85EhSy0trqS07ks68zq-UpMxLxnsv3cEcd3VvZdzFleIByVzpWT5tP448wbHl3wauSyqWukrMSsqbTJjtLn-77W8FXPmo5RSaWkaaWaCnp09nZkY_AE-be8wUgujDxG_oSNmGmwk74AcbF3G2AfsbcQO9j65zgZC_mVv-3LiwGnA0HrXpTaS62GzgtaOFCfrXtwc7Ilx_pd34nG1fF-8ZkPwXwk57o4-hekN74rK6LJu6saUl1k_cFlRXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2496357579</pqid></control><display><type>article</type><title>Analysis of magnetic vortex dissipation in Sn-segregated boundaries in Nb3 Sn superconducting RF cavities</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Carlson, Jared ; Pack, Alden ; Transtrum, Mark K ; Lee, Jaeyel ; Seidman, David N ; Liarte, Danilo B ; Sitaraman, Nathan S ; Senanian, Alen ; Kelley, Michelle M ; Sethna, James P ; Arias, Tomas ; Posen, Sam</creator><creatorcontrib>Carlson, Jared ; Pack, Alden ; Transtrum, Mark K ; Lee, Jaeyel ; Seidman, David N ; Liarte, Danilo B ; Sitaraman, Nathan S ; Senanian, Alen ; Kelley, Michelle M ; Sethna, James P ; Arias, Tomas ; Posen, Sam</creatorcontrib><description>We study mechanisms of vortex nucleation in Nb3 Sn superconducting RF (SRF) cavities using a combination of experimental, theoretical, and computational methods. Scanning transmission electron microscopy imaging and energy dispersive spectroscopy of some Nb3 Sn cavities show Sn segregation at grain boundaries in Nb3 Sn with Sn concentration as high as ∼ 35 at. % and widths ∼ 3 nm in chemical composition. Using ab initio calculations, we estimate the effect excess tin has on the local superconducting properties of the material. We model Sn segregation as a lowering of the local critical temperature. We then use time-dependent Ginzburg-Landau theory to understand the role of segregation on magnetic vortex nucleation. Our simulations indicate that the grain boundaries act as both nucleation sites for vortex penetration and pinning sites for vortices after nucleation. Depending on the magnitude of the applied field, vortices may remain pinned in the grain boundary or penetrate the grain itself. We estimate the superconducting losses due to vortices filling grain boundaries and compare with observed performance degradation with higher magnetic fields. We estimate that the quality factor may decrease by an order of magnitude (1010 to 109) at typical operating fields if 0.03% of the grain boundaries actively nucleate vortices. We additionally estimate the volume that would need to be filled with vortices to match experimental observations of cavity heating.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.103.024516</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Chemical composition ; Critical temperature ; Grain boundaries ; Grain Boundary Segregation ; Holes ; Nucleation ; Performance degradation ; Q factors ; Scanning transmission electron microscopy ; Superconductivity ; Tin ; Vortices</subject><ispartof>Physical review. B, 2021-01, Vol.103 (2), p.024516</ispartof><rights>Copyright American Physical Society Jan 1, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Carlson, Jared</creatorcontrib><creatorcontrib>Pack, Alden</creatorcontrib><creatorcontrib>Transtrum, Mark K</creatorcontrib><creatorcontrib>Lee, Jaeyel</creatorcontrib><creatorcontrib>Seidman, David N</creatorcontrib><creatorcontrib>Liarte, Danilo B</creatorcontrib><creatorcontrib>Sitaraman, Nathan S</creatorcontrib><creatorcontrib>Senanian, Alen</creatorcontrib><creatorcontrib>Kelley, Michelle M</creatorcontrib><creatorcontrib>Sethna, James P</creatorcontrib><creatorcontrib>Arias, Tomas</creatorcontrib><creatorcontrib>Posen, Sam</creatorcontrib><title>Analysis of magnetic vortex dissipation in Sn-segregated boundaries in Nb3 Sn superconducting RF cavities</title><title>Physical review. B</title><description>We study mechanisms of vortex nucleation in Nb3 Sn superconducting RF (SRF) cavities using a combination of experimental, theoretical, and computational methods. Scanning transmission electron microscopy imaging and energy dispersive spectroscopy of some Nb3 Sn cavities show Sn segregation at grain boundaries in Nb3 Sn with Sn concentration as high as ∼ 35 at. % and widths ∼ 3 nm in chemical composition. Using ab initio calculations, we estimate the effect excess tin has on the local superconducting properties of the material. We model Sn segregation as a lowering of the local critical temperature. We then use time-dependent Ginzburg-Landau theory to understand the role of segregation on magnetic vortex nucleation. Our simulations indicate that the grain boundaries act as both nucleation sites for vortex penetration and pinning sites for vortices after nucleation. Depending on the magnitude of the applied field, vortices may remain pinned in the grain boundary or penetrate the grain itself. We estimate the superconducting losses due to vortices filling grain boundaries and compare with observed performance degradation with higher magnetic fields. We estimate that the quality factor may decrease by an order of magnitude (1010 to 109) at typical operating fields if 0.03% of the grain boundaries actively nucleate vortices. We additionally estimate the volume that would need to be filled with vortices to match experimental observations of cavity heating.</description><subject>Chemical composition</subject><subject>Critical temperature</subject><subject>Grain boundaries</subject><subject>Grain Boundary Segregation</subject><subject>Holes</subject><subject>Nucleation</subject><subject>Performance degradation</subject><subject>Q factors</subject><subject>Scanning transmission electron microscopy</subject><subject>Superconductivity</subject><subject>Tin</subject><subject>Vortices</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNjk1LAzEURYMoWLS_wM0D1zMm85EhSy0trqS07ks68zq-UpMxLxnsv3cEcd3VvZdzFleIByVzpWT5tP448wbHl3wauSyqWukrMSsqbTJjtLn-77W8FXPmo5RSaWkaaWaCnp09nZkY_AE-be8wUgujDxG_oSNmGmwk74AcbF3G2AfsbcQO9j65zgZC_mVv-3LiwGnA0HrXpTaS62GzgtaOFCfrXtwc7Ilx_pd34nG1fF-8ZkPwXwk57o4-hekN74rK6LJu6saUl1k_cFlRXA</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Carlson, Jared</creator><creator>Pack, Alden</creator><creator>Transtrum, Mark K</creator><creator>Lee, Jaeyel</creator><creator>Seidman, David N</creator><creator>Liarte, Danilo B</creator><creator>Sitaraman, Nathan S</creator><creator>Senanian, Alen</creator><creator>Kelley, Michelle M</creator><creator>Sethna, James P</creator><creator>Arias, Tomas</creator><creator>Posen, Sam</creator><general>American Physical Society</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20210101</creationdate><title>Analysis of magnetic vortex dissipation in Sn-segregated boundaries in Nb3 Sn superconducting RF cavities</title><author>Carlson, Jared ; Pack, Alden ; Transtrum, Mark K ; Lee, Jaeyel ; Seidman, David N ; Liarte, Danilo B ; Sitaraman, Nathan S ; Senanian, Alen ; Kelley, Michelle M ; Sethna, James P ; Arias, Tomas ; Posen, Sam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24963575793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemical composition</topic><topic>Critical temperature</topic><topic>Grain boundaries</topic><topic>Grain Boundary Segregation</topic><topic>Holes</topic><topic>Nucleation</topic><topic>Performance degradation</topic><topic>Q factors</topic><topic>Scanning transmission electron microscopy</topic><topic>Superconductivity</topic><topic>Tin</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carlson, Jared</creatorcontrib><creatorcontrib>Pack, Alden</creatorcontrib><creatorcontrib>Transtrum, Mark K</creatorcontrib><creatorcontrib>Lee, Jaeyel</creatorcontrib><creatorcontrib>Seidman, David N</creatorcontrib><creatorcontrib>Liarte, Danilo B</creatorcontrib><creatorcontrib>Sitaraman, Nathan S</creatorcontrib><creatorcontrib>Senanian, Alen</creatorcontrib><creatorcontrib>Kelley, Michelle M</creatorcontrib><creatorcontrib>Sethna, James P</creatorcontrib><creatorcontrib>Arias, Tomas</creatorcontrib><creatorcontrib>Posen, Sam</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carlson, Jared</au><au>Pack, Alden</au><au>Transtrum, Mark K</au><au>Lee, Jaeyel</au><au>Seidman, David N</au><au>Liarte, Danilo B</au><au>Sitaraman, Nathan S</au><au>Senanian, Alen</au><au>Kelley, Michelle M</au><au>Sethna, James P</au><au>Arias, Tomas</au><au>Posen, Sam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of magnetic vortex dissipation in Sn-segregated boundaries in Nb3 Sn superconducting RF cavities</atitle><jtitle>Physical review. B</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>103</volume><issue>2</issue><spage>024516</spage><pages>024516-</pages><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>We study mechanisms of vortex nucleation in Nb3 Sn superconducting RF (SRF) cavities using a combination of experimental, theoretical, and computational methods. Scanning transmission electron microscopy imaging and energy dispersive spectroscopy of some Nb3 Sn cavities show Sn segregation at grain boundaries in Nb3 Sn with Sn concentration as high as ∼ 35 at. % and widths ∼ 3 nm in chemical composition. Using ab initio calculations, we estimate the effect excess tin has on the local superconducting properties of the material. We model Sn segregation as a lowering of the local critical temperature. We then use time-dependent Ginzburg-Landau theory to understand the role of segregation on magnetic vortex nucleation. Our simulations indicate that the grain boundaries act as both nucleation sites for vortex penetration and pinning sites for vortices after nucleation. Depending on the magnitude of the applied field, vortices may remain pinned in the grain boundary or penetrate the grain itself. We estimate the superconducting losses due to vortices filling grain boundaries and compare with observed performance degradation with higher magnetic fields. We estimate that the quality factor may decrease by an order of magnitude (1010 to 109) at typical operating fields if 0.03% of the grain boundaries actively nucleate vortices. We additionally estimate the volume that would need to be filled with vortices to match experimental observations of cavity heating.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.103.024516</doi></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2021-01, Vol.103 (2), p.024516
issn 2469-9950
2469-9969
language eng
recordid cdi_proquest_journals_2496357579
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
subjects Chemical composition
Critical temperature
Grain boundaries
Grain Boundary Segregation
Holes
Nucleation
Performance degradation
Q factors
Scanning transmission electron microscopy
Superconductivity
Tin
Vortices
title Analysis of magnetic vortex dissipation in Sn-segregated boundaries in Nb3 Sn superconducting RF cavities
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A19%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20magnetic%20vortex%20dissipation%20in%20Sn-segregated%20boundaries%20in%20Nb3%20Sn%20superconducting%20RF%20cavities&rft.jtitle=Physical%20review.%20B&rft.au=Carlson,%20Jared&rft.date=2021-01-01&rft.volume=103&rft.issue=2&rft.spage=024516&rft.pages=024516-&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.103.024516&rft_dat=%3Cproquest%3E2496357579%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_24963575793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2496357579&rft_id=info:pmid/&rfr_iscdi=true