Loading…
Delta Invariants of Singular del Pezzo Surfaces
We use the methods introduced by Cheltsov–Rubinstein–Zhang (Sel Math (N.S.) 25(2):25–34, 2019 ) to estimate δ -invariants of the seven singular del Pezzo surfaces with quotient singularities studied by Cheltsov–Park–Shramov (J Geom Anal 20(4):787–816, 2010 ) that have α -invariants less than 2 3 . A...
Saved in:
Published in: | The Journal of geometric analysis 2021-03, Vol.31 (3), p.2354-2382 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c402t-de6e6948d4b7290080c31c8d9206e9de5e9d6e1fd813445b418564aa39bd121d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c402t-de6e6948d4b7290080c31c8d9206e9de5e9d6e1fd813445b418564aa39bd121d3 |
container_end_page | 2382 |
container_issue | 3 |
container_start_page | 2354 |
container_title | The Journal of geometric analysis |
container_volume | 31 |
creator | Cheltsov, Ivan Park, Jihun Shramov, Constantin |
description | We use the methods introduced by Cheltsov–Rubinstein–Zhang (Sel Math (N.S.) 25(2):25–34,
2019
) to estimate
δ
-invariants of the seven singular del Pezzo surfaces with quotient singularities studied by Cheltsov–Park–Shramov (J Geom Anal 20(4):787–816,
2010
) that have
α
-invariants less than
2
3
. As a result, we verify that each of these surfaces admits an orbifold Kähler–Einstein metric. |
doi_str_mv | 10.1007/s12220-020-00355-9 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2497163241</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2497163241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-de6e6948d4b7290080c31c8d9206e9de5e9d6e1fd813445b418564aa39bd121d3</originalsourceid><addsrcrecordid>eNp9UMtKw0AUHUTBWv0BVwHXsXeeySylai0UFKrgbphkbkpKTOpMItivd0IEdy7OfcB5wCHkmsItBcgWgTLGIIURwKVM9QmZUSl1fNn7abxBQqo0U-fkIoQ9gFBcZDOyuMemt8m6_bK-tm0fkq5KtnW7GxrrE4dN8oLHY5dsB1_ZEsMlOatsE_Dqd8_J2-PD6_Ip3Tyv1su7TVoKYH3qUKHSIneiyJgGyKHktMydZqBQO5RxKKSVyykXQhaC5lIJa7kuHGXU8Tm5mXwPvvscMPRm3w2-jZGGCZ1RxZmgkcUmVum7EDxW5uDrD-u_DQUzFmOmYgyMGIsxOor4JAqR3O7Q_1n_o_oB0IVj0w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2497163241</pqid></control><display><type>article</type><title>Delta Invariants of Singular del Pezzo Surfaces</title><source>Springer Link</source><creator>Cheltsov, Ivan ; Park, Jihun ; Shramov, Constantin</creator><creatorcontrib>Cheltsov, Ivan ; Park, Jihun ; Shramov, Constantin</creatorcontrib><description>We use the methods introduced by Cheltsov–Rubinstein–Zhang (Sel Math (N.S.) 25(2):25–34,
2019
) to estimate
δ
-invariants of the seven singular del Pezzo surfaces with quotient singularities studied by Cheltsov–Park–Shramov (J Geom Anal 20(4):787–816,
2010
) that have
α
-invariants less than
2
3
. As a result, we verify that each of these surfaces admits an orbifold Kähler–Einstein metric.</description><identifier>ISSN: 1050-6926</identifier><identifier>EISSN: 1559-002X</identifier><identifier>DOI: 10.1007/s12220-020-00355-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Abstract Harmonic Analysis ; Convex and Discrete Geometry ; Differential Geometry ; Dynamical Systems and Ergodic Theory ; Fourier Analysis ; Geometry ; Global Analysis and Analysis on Manifolds ; Invariants ; Mathematics ; Mathematics and Statistics ; Quotients</subject><ispartof>The Journal of geometric analysis, 2021-03, Vol.31 (3), p.2354-2382</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-de6e6948d4b7290080c31c8d9206e9de5e9d6e1fd813445b418564aa39bd121d3</citedby><cites>FETCH-LOGICAL-c402t-de6e6948d4b7290080c31c8d9206e9de5e9d6e1fd813445b418564aa39bd121d3</cites><orcidid>0000-0002-6820-8073</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Cheltsov, Ivan</creatorcontrib><creatorcontrib>Park, Jihun</creatorcontrib><creatorcontrib>Shramov, Constantin</creatorcontrib><title>Delta Invariants of Singular del Pezzo Surfaces</title><title>The Journal of geometric analysis</title><addtitle>J Geom Anal</addtitle><description>We use the methods introduced by Cheltsov–Rubinstein–Zhang (Sel Math (N.S.) 25(2):25–34,
2019
) to estimate
δ
-invariants of the seven singular del Pezzo surfaces with quotient singularities studied by Cheltsov–Park–Shramov (J Geom Anal 20(4):787–816,
2010
) that have
α
-invariants less than
2
3
. As a result, we verify that each of these surfaces admits an orbifold Kähler–Einstein metric.</description><subject>Abstract Harmonic Analysis</subject><subject>Convex and Discrete Geometry</subject><subject>Differential Geometry</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Fourier Analysis</subject><subject>Geometry</subject><subject>Global Analysis and Analysis on Manifolds</subject><subject>Invariants</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Quotients</subject><issn>1050-6926</issn><issn>1559-002X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UMtKw0AUHUTBWv0BVwHXsXeeySylai0UFKrgbphkbkpKTOpMItivd0IEdy7OfcB5wCHkmsItBcgWgTLGIIURwKVM9QmZUSl1fNn7abxBQqo0U-fkIoQ9gFBcZDOyuMemt8m6_bK-tm0fkq5KtnW7GxrrE4dN8oLHY5dsB1_ZEsMlOatsE_Dqd8_J2-PD6_Ip3Tyv1su7TVoKYH3qUKHSIneiyJgGyKHktMydZqBQO5RxKKSVyykXQhaC5lIJa7kuHGXU8Tm5mXwPvvscMPRm3w2-jZGGCZ1RxZmgkcUmVum7EDxW5uDrD-u_DQUzFmOmYgyMGIsxOor4JAqR3O7Q_1n_o_oB0IVj0w</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Cheltsov, Ivan</creator><creator>Park, Jihun</creator><creator>Shramov, Constantin</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6820-8073</orcidid></search><sort><creationdate>20210301</creationdate><title>Delta Invariants of Singular del Pezzo Surfaces</title><author>Cheltsov, Ivan ; Park, Jihun ; Shramov, Constantin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-de6e6948d4b7290080c31c8d9206e9de5e9d6e1fd813445b418564aa39bd121d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Convex and Discrete Geometry</topic><topic>Differential Geometry</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Fourier Analysis</topic><topic>Geometry</topic><topic>Global Analysis and Analysis on Manifolds</topic><topic>Invariants</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Quotients</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheltsov, Ivan</creatorcontrib><creatorcontrib>Park, Jihun</creatorcontrib><creatorcontrib>Shramov, Constantin</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><jtitle>The Journal of geometric analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheltsov, Ivan</au><au>Park, Jihun</au><au>Shramov, Constantin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Delta Invariants of Singular del Pezzo Surfaces</atitle><jtitle>The Journal of geometric analysis</jtitle><stitle>J Geom Anal</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>31</volume><issue>3</issue><spage>2354</spage><epage>2382</epage><pages>2354-2382</pages><issn>1050-6926</issn><eissn>1559-002X</eissn><abstract>We use the methods introduced by Cheltsov–Rubinstein–Zhang (Sel Math (N.S.) 25(2):25–34,
2019
) to estimate
δ
-invariants of the seven singular del Pezzo surfaces with quotient singularities studied by Cheltsov–Park–Shramov (J Geom Anal 20(4):787–816,
2010
) that have
α
-invariants less than
2
3
. As a result, we verify that each of these surfaces admits an orbifold Kähler–Einstein metric.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s12220-020-00355-9</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0002-6820-8073</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1050-6926 |
ispartof | The Journal of geometric analysis, 2021-03, Vol.31 (3), p.2354-2382 |
issn | 1050-6926 1559-002X |
language | eng |
recordid | cdi_proquest_journals_2497163241 |
source | Springer Link |
subjects | Abstract Harmonic Analysis Convex and Discrete Geometry Differential Geometry Dynamical Systems and Ergodic Theory Fourier Analysis Geometry Global Analysis and Analysis on Manifolds Invariants Mathematics Mathematics and Statistics Quotients |
title | Delta Invariants of Singular del Pezzo Surfaces |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T11%3A51%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Delta%20Invariants%20of%20Singular%20del%20Pezzo%20Surfaces&rft.jtitle=The%20Journal%20of%20geometric%20analysis&rft.au=Cheltsov,%20Ivan&rft.date=2021-03-01&rft.volume=31&rft.issue=3&rft.spage=2354&rft.epage=2382&rft.pages=2354-2382&rft.issn=1050-6926&rft.eissn=1559-002X&rft_id=info:doi/10.1007/s12220-020-00355-9&rft_dat=%3Cproquest_cross%3E2497163241%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c402t-de6e6948d4b7290080c31c8d9206e9de5e9d6e1fd813445b418564aa39bd121d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2497163241&rft_id=info:pmid/&rfr_iscdi=true |