Loading…

Delta Invariants of Singular del Pezzo Surfaces

We use the methods introduced by Cheltsov–Rubinstein–Zhang (Sel Math (N.S.) 25(2):25–34, 2019 ) to estimate δ -invariants of the seven singular del Pezzo surfaces with quotient singularities studied by Cheltsov–Park–Shramov (J Geom Anal 20(4):787–816, 2010 ) that have α -invariants less than 2 3 . A...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of geometric analysis 2021-03, Vol.31 (3), p.2354-2382
Main Authors: Cheltsov, Ivan, Park, Jihun, Shramov, Constantin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c402t-de6e6948d4b7290080c31c8d9206e9de5e9d6e1fd813445b418564aa39bd121d3
cites cdi_FETCH-LOGICAL-c402t-de6e6948d4b7290080c31c8d9206e9de5e9d6e1fd813445b418564aa39bd121d3
container_end_page 2382
container_issue 3
container_start_page 2354
container_title The Journal of geometric analysis
container_volume 31
creator Cheltsov, Ivan
Park, Jihun
Shramov, Constantin
description We use the methods introduced by Cheltsov–Rubinstein–Zhang (Sel Math (N.S.) 25(2):25–34, 2019 ) to estimate δ -invariants of the seven singular del Pezzo surfaces with quotient singularities studied by Cheltsov–Park–Shramov (J Geom Anal 20(4):787–816, 2010 ) that have α -invariants less than 2 3 . As a result, we verify that each of these surfaces admits an orbifold Kähler–Einstein metric.
doi_str_mv 10.1007/s12220-020-00355-9
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2497163241</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2497163241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-de6e6948d4b7290080c31c8d9206e9de5e9d6e1fd813445b418564aa39bd121d3</originalsourceid><addsrcrecordid>eNp9UMtKw0AUHUTBWv0BVwHXsXeeySylai0UFKrgbphkbkpKTOpMItivd0IEdy7OfcB5wCHkmsItBcgWgTLGIIURwKVM9QmZUSl1fNn7abxBQqo0U-fkIoQ9gFBcZDOyuMemt8m6_bK-tm0fkq5KtnW7GxrrE4dN8oLHY5dsB1_ZEsMlOatsE_Dqd8_J2-PD6_Ip3Tyv1su7TVoKYH3qUKHSIneiyJgGyKHktMydZqBQO5RxKKSVyykXQhaC5lIJa7kuHGXU8Tm5mXwPvvscMPRm3w2-jZGGCZ1RxZmgkcUmVum7EDxW5uDrD-u_DQUzFmOmYgyMGIsxOor4JAqR3O7Q_1n_o_oB0IVj0w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2497163241</pqid></control><display><type>article</type><title>Delta Invariants of Singular del Pezzo Surfaces</title><source>Springer Link</source><creator>Cheltsov, Ivan ; Park, Jihun ; Shramov, Constantin</creator><creatorcontrib>Cheltsov, Ivan ; Park, Jihun ; Shramov, Constantin</creatorcontrib><description>We use the methods introduced by Cheltsov–Rubinstein–Zhang (Sel Math (N.S.) 25(2):25–34, 2019 ) to estimate δ -invariants of the seven singular del Pezzo surfaces with quotient singularities studied by Cheltsov–Park–Shramov (J Geom Anal 20(4):787–816, 2010 ) that have α -invariants less than 2 3 . As a result, we verify that each of these surfaces admits an orbifold Kähler–Einstein metric.</description><identifier>ISSN: 1050-6926</identifier><identifier>EISSN: 1559-002X</identifier><identifier>DOI: 10.1007/s12220-020-00355-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Abstract Harmonic Analysis ; Convex and Discrete Geometry ; Differential Geometry ; Dynamical Systems and Ergodic Theory ; Fourier Analysis ; Geometry ; Global Analysis and Analysis on Manifolds ; Invariants ; Mathematics ; Mathematics and Statistics ; Quotients</subject><ispartof>The Journal of geometric analysis, 2021-03, Vol.31 (3), p.2354-2382</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-de6e6948d4b7290080c31c8d9206e9de5e9d6e1fd813445b418564aa39bd121d3</citedby><cites>FETCH-LOGICAL-c402t-de6e6948d4b7290080c31c8d9206e9de5e9d6e1fd813445b418564aa39bd121d3</cites><orcidid>0000-0002-6820-8073</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Cheltsov, Ivan</creatorcontrib><creatorcontrib>Park, Jihun</creatorcontrib><creatorcontrib>Shramov, Constantin</creatorcontrib><title>Delta Invariants of Singular del Pezzo Surfaces</title><title>The Journal of geometric analysis</title><addtitle>J Geom Anal</addtitle><description>We use the methods introduced by Cheltsov–Rubinstein–Zhang (Sel Math (N.S.) 25(2):25–34, 2019 ) to estimate δ -invariants of the seven singular del Pezzo surfaces with quotient singularities studied by Cheltsov–Park–Shramov (J Geom Anal 20(4):787–816, 2010 ) that have α -invariants less than 2 3 . As a result, we verify that each of these surfaces admits an orbifold Kähler–Einstein metric.</description><subject>Abstract Harmonic Analysis</subject><subject>Convex and Discrete Geometry</subject><subject>Differential Geometry</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Fourier Analysis</subject><subject>Geometry</subject><subject>Global Analysis and Analysis on Manifolds</subject><subject>Invariants</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Quotients</subject><issn>1050-6926</issn><issn>1559-002X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UMtKw0AUHUTBWv0BVwHXsXeeySylai0UFKrgbphkbkpKTOpMItivd0IEdy7OfcB5wCHkmsItBcgWgTLGIIURwKVM9QmZUSl1fNn7abxBQqo0U-fkIoQ9gFBcZDOyuMemt8m6_bK-tm0fkq5KtnW7GxrrE4dN8oLHY5dsB1_ZEsMlOatsE_Dqd8_J2-PD6_Ip3Tyv1su7TVoKYH3qUKHSIneiyJgGyKHktMydZqBQO5RxKKSVyykXQhaC5lIJa7kuHGXU8Tm5mXwPvvscMPRm3w2-jZGGCZ1RxZmgkcUmVum7EDxW5uDrD-u_DQUzFmOmYgyMGIsxOor4JAqR3O7Q_1n_o_oB0IVj0w</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Cheltsov, Ivan</creator><creator>Park, Jihun</creator><creator>Shramov, Constantin</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6820-8073</orcidid></search><sort><creationdate>20210301</creationdate><title>Delta Invariants of Singular del Pezzo Surfaces</title><author>Cheltsov, Ivan ; Park, Jihun ; Shramov, Constantin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-de6e6948d4b7290080c31c8d9206e9de5e9d6e1fd813445b418564aa39bd121d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Convex and Discrete Geometry</topic><topic>Differential Geometry</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Fourier Analysis</topic><topic>Geometry</topic><topic>Global Analysis and Analysis on Manifolds</topic><topic>Invariants</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Quotients</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheltsov, Ivan</creatorcontrib><creatorcontrib>Park, Jihun</creatorcontrib><creatorcontrib>Shramov, Constantin</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><jtitle>The Journal of geometric analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheltsov, Ivan</au><au>Park, Jihun</au><au>Shramov, Constantin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Delta Invariants of Singular del Pezzo Surfaces</atitle><jtitle>The Journal of geometric analysis</jtitle><stitle>J Geom Anal</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>31</volume><issue>3</issue><spage>2354</spage><epage>2382</epage><pages>2354-2382</pages><issn>1050-6926</issn><eissn>1559-002X</eissn><abstract>We use the methods introduced by Cheltsov–Rubinstein–Zhang (Sel Math (N.S.) 25(2):25–34, 2019 ) to estimate δ -invariants of the seven singular del Pezzo surfaces with quotient singularities studied by Cheltsov–Park–Shramov (J Geom Anal 20(4):787–816, 2010 ) that have α -invariants less than 2 3 . As a result, we verify that each of these surfaces admits an orbifold Kähler–Einstein metric.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s12220-020-00355-9</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0002-6820-8073</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1050-6926
ispartof The Journal of geometric analysis, 2021-03, Vol.31 (3), p.2354-2382
issn 1050-6926
1559-002X
language eng
recordid cdi_proquest_journals_2497163241
source Springer Link
subjects Abstract Harmonic Analysis
Convex and Discrete Geometry
Differential Geometry
Dynamical Systems and Ergodic Theory
Fourier Analysis
Geometry
Global Analysis and Analysis on Manifolds
Invariants
Mathematics
Mathematics and Statistics
Quotients
title Delta Invariants of Singular del Pezzo Surfaces
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T11%3A51%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Delta%20Invariants%20of%20Singular%20del%20Pezzo%20Surfaces&rft.jtitle=The%20Journal%20of%20geometric%20analysis&rft.au=Cheltsov,%20Ivan&rft.date=2021-03-01&rft.volume=31&rft.issue=3&rft.spage=2354&rft.epage=2382&rft.pages=2354-2382&rft.issn=1050-6926&rft.eissn=1559-002X&rft_id=info:doi/10.1007/s12220-020-00355-9&rft_dat=%3Cproquest_cross%3E2497163241%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c402t-de6e6948d4b7290080c31c8d9206e9de5e9d6e1fd813445b418564aa39bd121d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2497163241&rft_id=info:pmid/&rfr_iscdi=true