Loading…
A Radiation-Balanced Silica Fiber Amplifier
We report what we believe to be the first radiation-balanced fiber amplifier - a device that provides optical gain while experiencing no temperature rise. The gain medium is a silica fiber with a 21 um-diameter core highly doped with Yb3+ (2.52 wt.%) and co doped with 2.00 wt.% Al to reduce concentr...
Saved in:
Published in: | arXiv.org 2021-03 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We report what we believe to be the first radiation-balanced fiber amplifier - a device that provides optical gain while experiencing no temperature rise. The gain medium is a silica fiber with a 21 um-diameter core highly doped with Yb3+ (2.52 wt.%) and co doped with 2.00 wt.% Al to reduce concentration quenching. The amplifier was core-pumped with 1040 nm light to create anti-Stokes fluorescence (ASF) cooling and gain in the core at 1064 nm. Using a custom slow-light FBG sensor with mK resolution, temperature measurements were performed at multiple locations along the amplifier fiber. A 4.35-m fiber pumped with 2.62 W produced 17 dB of gain while the average fiber temperature remained slightly below room temperature. This advancement is a fundamental step toward the creation of ultra-stable lasers necessary to many applications, especially low-noise sensing and high-precision metrology. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2103.02698 |