Loading…
A Radiation-Balanced Silica Fiber Amplifier
We report what we believe to be the first radiation-balanced fiber amplifier - a device that provides optical gain while experiencing no temperature rise. The gain medium is a silica fiber with a 21 um-diameter core highly doped with Yb3+ (2.52 wt.%) and co doped with 2.00 wt.% Al to reduce concentr...
Saved in:
Published in: | arXiv.org 2021-03 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Knall, Jennifer M Engholm, Magnus Boilard, Tommy Bernier, Martin Digonnet, Michel J F |
description | We report what we believe to be the first radiation-balanced fiber amplifier - a device that provides optical gain while experiencing no temperature rise. The gain medium is a silica fiber with a 21 um-diameter core highly doped with Yb3+ (2.52 wt.%) and co doped with 2.00 wt.% Al to reduce concentration quenching. The amplifier was core-pumped with 1040 nm light to create anti-Stokes fluorescence (ASF) cooling and gain in the core at 1064 nm. Using a custom slow-light FBG sensor with mK resolution, temperature measurements were performed at multiple locations along the amplifier fiber. A 4.35-m fiber pumped with 2.62 W produced 17 dB of gain while the average fiber temperature remained slightly below room temperature. This advancement is a fundamental step toward the creation of ultra-stable lasers necessary to many applications, especially low-noise sensing and high-precision metrology. |
doi_str_mv | 10.48550/arxiv.2103.02698 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2497372881</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2497372881</sourcerecordid><originalsourceid>FETCH-LOGICAL-a521-fa0e86a30a5e7b3cc31533588a6c2b98701b3ac4d5238812148ba9fd9723bc943</originalsourceid><addsrcrecordid>eNotjVFLwzAURoMgOOZ-gG8FH6U1uTdpbh7rcE4YCLr3cZOmkFHbmW7iz7egT9_D4ZxPiDslK03GyEfOP-m7AiWxklA7uhILQFQlaYAbsZqmo5QzsGAMLsRDU7xzm_icxqF84p6HENviI_UpcLFJPuai-Tz1qUsx34rrjvsprv53Kfab5_16W-7eXl7Xza5kA6rsWEaqGSWbaD2GgMogGiKuA3hHViqPHHRrAIkUKE2eXdc6C-iD07gU93_ZUx6_LnE6H47jJQ_z4wG0s2hh1vAXy4FBjA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2497372881</pqid></control><display><type>article</type><title>A Radiation-Balanced Silica Fiber Amplifier</title><source>Publicly Available Content Database</source><creator>Knall, Jennifer M ; Engholm, Magnus ; Boilard, Tommy ; Bernier, Martin ; Digonnet, Michel J F</creator><creatorcontrib>Knall, Jennifer M ; Engholm, Magnus ; Boilard, Tommy ; Bernier, Martin ; Digonnet, Michel J F</creatorcontrib><description>We report what we believe to be the first radiation-balanced fiber amplifier - a device that provides optical gain while experiencing no temperature rise. The gain medium is a silica fiber with a 21 um-diameter core highly doped with Yb3+ (2.52 wt.%) and co doped with 2.00 wt.% Al to reduce concentration quenching. The amplifier was core-pumped with 1040 nm light to create anti-Stokes fluorescence (ASF) cooling and gain in the core at 1064 nm. Using a custom slow-light FBG sensor with mK resolution, temperature measurements were performed at multiple locations along the amplifier fiber. A 4.35-m fiber pumped with 2.62 W produced 17 dB of gain while the average fiber temperature remained slightly below room temperature. This advancement is a fundamental step toward the creation of ultra-stable lasers necessary to many applications, especially low-noise sensing and high-precision metrology.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2103.02698</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Amplification ; Amplifiers ; Diameters ; Fluorescence ; Quenching ; Radiation ; Room temperature ; Silicon dioxide</subject><ispartof>arXiv.org, 2021-03</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2497372881?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Knall, Jennifer M</creatorcontrib><creatorcontrib>Engholm, Magnus</creatorcontrib><creatorcontrib>Boilard, Tommy</creatorcontrib><creatorcontrib>Bernier, Martin</creatorcontrib><creatorcontrib>Digonnet, Michel J F</creatorcontrib><title>A Radiation-Balanced Silica Fiber Amplifier</title><title>arXiv.org</title><description>We report what we believe to be the first radiation-balanced fiber amplifier - a device that provides optical gain while experiencing no temperature rise. The gain medium is a silica fiber with a 21 um-diameter core highly doped with Yb3+ (2.52 wt.%) and co doped with 2.00 wt.% Al to reduce concentration quenching. The amplifier was core-pumped with 1040 nm light to create anti-Stokes fluorescence (ASF) cooling and gain in the core at 1064 nm. Using a custom slow-light FBG sensor with mK resolution, temperature measurements were performed at multiple locations along the amplifier fiber. A 4.35-m fiber pumped with 2.62 W produced 17 dB of gain while the average fiber temperature remained slightly below room temperature. This advancement is a fundamental step toward the creation of ultra-stable lasers necessary to many applications, especially low-noise sensing and high-precision metrology.</description><subject>Amplification</subject><subject>Amplifiers</subject><subject>Diameters</subject><subject>Fluorescence</subject><subject>Quenching</subject><subject>Radiation</subject><subject>Room temperature</subject><subject>Silicon dioxide</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjVFLwzAURoMgOOZ-gG8FH6U1uTdpbh7rcE4YCLr3cZOmkFHbmW7iz7egT9_D4ZxPiDslK03GyEfOP-m7AiWxklA7uhILQFQlaYAbsZqmo5QzsGAMLsRDU7xzm_icxqF84p6HENviI_UpcLFJPuai-Tz1qUsx34rrjvsprv53Kfab5_16W-7eXl7Xza5kA6rsWEaqGSWbaD2GgMogGiKuA3hHViqPHHRrAIkUKE2eXdc6C-iD07gU93_ZUx6_LnE6H47jJQ_z4wG0s2hh1vAXy4FBjA</recordid><startdate>20210303</startdate><enddate>20210303</enddate><creator>Knall, Jennifer M</creator><creator>Engholm, Magnus</creator><creator>Boilard, Tommy</creator><creator>Bernier, Martin</creator><creator>Digonnet, Michel J F</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210303</creationdate><title>A Radiation-Balanced Silica Fiber Amplifier</title><author>Knall, Jennifer M ; Engholm, Magnus ; Boilard, Tommy ; Bernier, Martin ; Digonnet, Michel J F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a521-fa0e86a30a5e7b3cc31533588a6c2b98701b3ac4d5238812148ba9fd9723bc943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amplification</topic><topic>Amplifiers</topic><topic>Diameters</topic><topic>Fluorescence</topic><topic>Quenching</topic><topic>Radiation</topic><topic>Room temperature</topic><topic>Silicon dioxide</topic><toplevel>online_resources</toplevel><creatorcontrib>Knall, Jennifer M</creatorcontrib><creatorcontrib>Engholm, Magnus</creatorcontrib><creatorcontrib>Boilard, Tommy</creatorcontrib><creatorcontrib>Bernier, Martin</creatorcontrib><creatorcontrib>Digonnet, Michel J F</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Knall, Jennifer M</au><au>Engholm, Magnus</au><au>Boilard, Tommy</au><au>Bernier, Martin</au><au>Digonnet, Michel J F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Radiation-Balanced Silica Fiber Amplifier</atitle><jtitle>arXiv.org</jtitle><date>2021-03-03</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>We report what we believe to be the first radiation-balanced fiber amplifier - a device that provides optical gain while experiencing no temperature rise. The gain medium is a silica fiber with a 21 um-diameter core highly doped with Yb3+ (2.52 wt.%) and co doped with 2.00 wt.% Al to reduce concentration quenching. The amplifier was core-pumped with 1040 nm light to create anti-Stokes fluorescence (ASF) cooling and gain in the core at 1064 nm. Using a custom slow-light FBG sensor with mK resolution, temperature measurements were performed at multiple locations along the amplifier fiber. A 4.35-m fiber pumped with 2.62 W produced 17 dB of gain while the average fiber temperature remained slightly below room temperature. This advancement is a fundamental step toward the creation of ultra-stable lasers necessary to many applications, especially low-noise sensing and high-precision metrology.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2103.02698</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2497372881 |
source | Publicly Available Content Database |
subjects | Amplification Amplifiers Diameters Fluorescence Quenching Radiation Room temperature Silicon dioxide |
title | A Radiation-Balanced Silica Fiber Amplifier |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A13%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Radiation-Balanced%20Silica%20Fiber%20Amplifier&rft.jtitle=arXiv.org&rft.au=Knall,%20Jennifer%20M&rft.date=2021-03-03&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2103.02698&rft_dat=%3Cproquest%3E2497372881%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a521-fa0e86a30a5e7b3cc31533588a6c2b98701b3ac4d5238812148ba9fd9723bc943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2497372881&rft_id=info:pmid/&rfr_iscdi=true |