Loading…

Investigation of positive definite solution of nonlinear matrix equation Xp=Q+∑i=1mAi∗XδAi

In this paper, we consider the nonlinear matrix equation X p = Q + ∑ i = 1 m A i ∗ X δ A i , where A i ( i = 1 , 2 , … , m ) are n × n nonsingular complex matrices, Q is a n × n Hermitian positive definite (HPD) matrix, p ≥ 1 , m ≥ 1 are positive integers, and δ ∈ ( 0 , 1 ) . We discuss the solution...

Full description

Saved in:
Bibliographic Details
Published in:Computational & applied mathematics 2021, Vol.40 (3)
Main Authors: Jin, Zhixiang, Zhai, Chengbo
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 3
container_start_page
container_title Computational & applied mathematics
container_volume 40
creator Jin, Zhixiang
Zhai, Chengbo
description In this paper, we consider the nonlinear matrix equation X p = Q + ∑ i = 1 m A i ∗ X δ A i , where A i ( i = 1 , 2 , … , m ) are n × n nonsingular complex matrices, Q is a n × n Hermitian positive definite (HPD) matrix, p ≥ 1 , m ≥ 1 are positive integers, and δ ∈ ( 0 , 1 ) . We discuss the solution of this equation via properties of Thompson metric and two fixed point theorems in ordered Banach spaces and estimate the bounds of the HPD solution. Furthermore, perturbation analysis is investigated.
doi_str_mv 10.1007/s40314-021-01463-0
format article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2497724059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2497724059</sourcerecordid><originalsourceid>FETCH-LOGICAL-p720-a930c23c2b0e5532f147a36e983890c29726c056b5131ca3119796cac0b90d563</originalsourceid><addsrcrecordid>eNpFkE1OwzAQRi0EEqVwAVaRWCLD2OPE8aKLquKnUiWE1EV3lps6lavWSeOk4gjddsVFOAeH6EkIBMRqFt_7ZjSPkGsGdwxA3gcByAQFzigwkSCFE9JjKUgKCPyU9DjHlGICeE4uQlgBoGRC9Ige-50NtVua2hU-KvKoLIKr3c5GC5s772obhWLd_KW-8Gvnramijakr9xbZbdNVZ-Xg9fa4P7gB2wzdcf8--_wYuktylpt1sFe_s0-mjw_T0TOdvDyNR8MJLSUHahRCxjHjc7BxjDxnQhpMrEoxVW2iJE8yiJN5zJBlBhlTUiWZyWCuYBEn2Cc33dqyKrZN-5BeFU3l24uaCyUlFxCrlsKOCmXl_NJW_xQD_S1SdyJ1K1L_iNSAXycwZ90</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2497724059</pqid></control><display><type>article</type><title>Investigation of positive definite solution of nonlinear matrix equation Xp=Q+∑i=1mAi∗XδAi</title><source>Springer Link</source><creator>Jin, Zhixiang ; Zhai, Chengbo</creator><creatorcontrib>Jin, Zhixiang ; Zhai, Chengbo</creatorcontrib><description>In this paper, we consider the nonlinear matrix equation X p = Q + ∑ i = 1 m A i ∗ X δ A i , where A i ( i = 1 , 2 , … , m ) are n × n nonsingular complex matrices, Q is a n × n Hermitian positive definite (HPD) matrix, p ≥ 1 , m ≥ 1 are positive integers, and δ ∈ ( 0 , 1 ) . We discuss the solution of this equation via properties of Thompson metric and two fixed point theorems in ordered Banach spaces and estimate the bounds of the HPD solution. Furthermore, perturbation analysis is investigated.</description><identifier>ISSN: 2238-3603</identifier><identifier>EISSN: 1807-0302</identifier><identifier>DOI: 10.1007/s40314-021-01463-0</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applications of Mathematics ; Applied physics ; Banach spaces ; Computational mathematics ; Computational Mathematics and Numerical Analysis ; Fixed points (mathematics) ; Mathematical analysis ; Mathematical Applications in Computer Science ; Mathematical Applications in the Physical Sciences ; Mathematics ; Mathematics and Statistics ; Matrix methods ; Perturbation methods</subject><ispartof>Computational &amp; applied mathematics, 2021, Vol.40 (3)</ispartof><rights>SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2021</rights><rights>SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Jin, Zhixiang</creatorcontrib><creatorcontrib>Zhai, Chengbo</creatorcontrib><title>Investigation of positive definite solution of nonlinear matrix equation Xp=Q+∑i=1mAi∗XδAi</title><title>Computational &amp; applied mathematics</title><addtitle>Comp. Appl. Math</addtitle><description>In this paper, we consider the nonlinear matrix equation X p = Q + ∑ i = 1 m A i ∗ X δ A i , where A i ( i = 1 , 2 , … , m ) are n × n nonsingular complex matrices, Q is a n × n Hermitian positive definite (HPD) matrix, p ≥ 1 , m ≥ 1 are positive integers, and δ ∈ ( 0 , 1 ) . We discuss the solution of this equation via properties of Thompson metric and two fixed point theorems in ordered Banach spaces and estimate the bounds of the HPD solution. Furthermore, perturbation analysis is investigated.</description><subject>Applications of Mathematics</subject><subject>Applied physics</subject><subject>Banach spaces</subject><subject>Computational mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Fixed points (mathematics)</subject><subject>Mathematical analysis</subject><subject>Mathematical Applications in Computer Science</subject><subject>Mathematical Applications in the Physical Sciences</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Matrix methods</subject><subject>Perturbation methods</subject><issn>2238-3603</issn><issn>1807-0302</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpFkE1OwzAQRi0EEqVwAVaRWCLD2OPE8aKLquKnUiWE1EV3lps6lavWSeOk4gjddsVFOAeH6EkIBMRqFt_7ZjSPkGsGdwxA3gcByAQFzigwkSCFE9JjKUgKCPyU9DjHlGICeE4uQlgBoGRC9Ige-50NtVua2hU-KvKoLIKr3c5GC5s772obhWLd_KW-8Gvnramijakr9xbZbdNVZ-Xg9fa4P7gB2wzdcf8--_wYuktylpt1sFe_s0-mjw_T0TOdvDyNR8MJLSUHahRCxjHjc7BxjDxnQhpMrEoxVW2iJE8yiJN5zJBlBhlTUiWZyWCuYBEn2Cc33dqyKrZN-5BeFU3l24uaCyUlFxCrlsKOCmXl_NJW_xQD_S1SdyJ1K1L_iNSAXycwZ90</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Jin, Zhixiang</creator><creator>Zhai, Chengbo</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope/></search><sort><creationdate>2021</creationdate><title>Investigation of positive definite solution of nonlinear matrix equation Xp=Q+∑i=1mAi∗XδAi</title><author>Jin, Zhixiang ; Zhai, Chengbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p720-a930c23c2b0e5532f147a36e983890c29726c056b5131ca3119796cac0b90d563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applications of Mathematics</topic><topic>Applied physics</topic><topic>Banach spaces</topic><topic>Computational mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Fixed points (mathematics)</topic><topic>Mathematical analysis</topic><topic>Mathematical Applications in Computer Science</topic><topic>Mathematical Applications in the Physical Sciences</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Matrix methods</topic><topic>Perturbation methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Zhixiang</creatorcontrib><creatorcontrib>Zhai, Chengbo</creatorcontrib><jtitle>Computational &amp; applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Zhixiang</au><au>Zhai, Chengbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of positive definite solution of nonlinear matrix equation Xp=Q+∑i=1mAi∗XδAi</atitle><jtitle>Computational &amp; applied mathematics</jtitle><stitle>Comp. Appl. Math</stitle><date>2021</date><risdate>2021</risdate><volume>40</volume><issue>3</issue><issn>2238-3603</issn><eissn>1807-0302</eissn><abstract>In this paper, we consider the nonlinear matrix equation X p = Q + ∑ i = 1 m A i ∗ X δ A i , where A i ( i = 1 , 2 , … , m ) are n × n nonsingular complex matrices, Q is a n × n Hermitian positive definite (HPD) matrix, p ≥ 1 , m ≥ 1 are positive integers, and δ ∈ ( 0 , 1 ) . We discuss the solution of this equation via properties of Thompson metric and two fixed point theorems in ordered Banach spaces and estimate the bounds of the HPD solution. Furthermore, perturbation analysis is investigated.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40314-021-01463-0</doi></addata></record>
fulltext fulltext
identifier ISSN: 2238-3603
ispartof Computational & applied mathematics, 2021, Vol.40 (3)
issn 2238-3603
1807-0302
language eng
recordid cdi_proquest_journals_2497724059
source Springer Link
subjects Applications of Mathematics
Applied physics
Banach spaces
Computational mathematics
Computational Mathematics and Numerical Analysis
Fixed points (mathematics)
Mathematical analysis
Mathematical Applications in Computer Science
Mathematical Applications in the Physical Sciences
Mathematics
Mathematics and Statistics
Matrix methods
Perturbation methods
title Investigation of positive definite solution of nonlinear matrix equation Xp=Q+∑i=1mAi∗XδAi
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A54%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20positive%20definite%20solution%20of%20nonlinear%20matrix%20equation%20Xp=Q+%E2%88%91i=1mAi%E2%88%97X%CE%B4Ai&rft.jtitle=Computational%20&%20applied%20mathematics&rft.au=Jin,%20Zhixiang&rft.date=2021&rft.volume=40&rft.issue=3&rft.issn=2238-3603&rft.eissn=1807-0302&rft_id=info:doi/10.1007/s40314-021-01463-0&rft_dat=%3Cproquest_sprin%3E2497724059%3C/proquest_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p720-a930c23c2b0e5532f147a36e983890c29726c056b5131ca3119796cac0b90d563%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2497724059&rft_id=info:pmid/&rfr_iscdi=true