Loading…

A LiDAR-Aided Inertial Positioning Approach for a Longwall Shearer in Underground Coal Mining

The absolute three-dimensional position of a longwall shearer is fundamental to longwall mining automation. The positioning of the longwall shearer is usually realized by the inertial navigation system (INS) and odometer (OD). However, the position accuracy of this positioning approach gradually dec...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical problems in engineering 2021-02, Vol.2021, p.1-15
Main Authors: Zheng, Jiangtao, Li, Sihai, Li, Nan, Fu, Qiangwen, Liu, Shiming, Yan, Gongmin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The absolute three-dimensional position of a longwall shearer is fundamental to longwall mining automation. The positioning of the longwall shearer is usually realized by the inertial navigation system (INS) and odometer (OD). However, the position accuracy of this positioning approach gradually decreases over time due to the gyro drift. To further increase the positioning accuracy of the shearer, this paper proposes a positioning approach based on the INS and light detection and ranging (LiDAR). A Kalman filter (KF) model based on the observation provided by detecting hydraulic supports which are part of the longwall face, using the LiDAR, is established. The selection scheme of the point features is studied through a set of simulations. In addition, compared with that of the approach based on the INS and OD, the shearer positioning accuracy obtained using the proposed approach is higher. When the shearer moves along a 350 m track for 6 cutting cycles and lasts about 7.1 h, both east and north position errors can be maintained within 0.2 m and the height error within 0.1 m.
ISSN:1024-123X
1563-5147
DOI:10.1155/2021/6616090