Loading…

Degradation and effect of 6:2 fluorotelomer alcohol in aerobic composting of sludge

Perfluoroalkyl carboxylates (PFCAs) is toxic to the environment and human health. However, the degradation characteristics of fluorotelomer alcohols (FTOHs), precursors of PFACAs biodegradation, in the sludge during aerobic composting remain unclear. In this study, the degradation characteristics of...

Full description

Saved in:
Bibliographic Details
Published in:Biodegradation (Dordrecht) 2021-02, Vol.32 (1), p.99-112
Main Authors: Qiao, Weichuan, Miao, Jiahui, Jiang, Hongmei, Yang, Qiwen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Perfluoroalkyl carboxylates (PFCAs) is toxic to the environment and human health. However, the degradation characteristics of fluorotelomer alcohols (FTOHs), precursors of PFACAs biodegradation, in the sludge during aerobic composting remain unclear. In this study, the degradation characteristics of 6:2 FTOH in sewage sludge by composting were researched and the influences of 6:2 FTOH on the composting process and microbial communities of the sludge were evaluated. After 52 days of composting, 6:2 FTOH retained only 0.73% of its original concentration, and its half-life was less than 1 d; 6:2 FTOH was degraded finally to perfluorohex unsaturated acid, perfluoropentanoic acid, 5:3 polyfluorinated acid (FTCA), 4:3 FTCA, and perfluorobutanoic acid through two pathways; and 6:2 FTCA and 6:2 fluorotel unsaturated acid were the intermediate products. Notably, dosing with 6:2 FTOH affected the composting process of sewage sludge. Additionally, 50 mg/kg 6:2 FTOH resulted in a decrease in the microbial richness and diversity of sludge compost. When compared with the compost without 6:2 FTOH, the proportion of Proteobacteria had increased, and the proportion of Firmicutes had decreased as the concentration of 6:2 FTOH increased. The negative effect of a dosage of 50 mg/kg 6:2 FTOH was more obvious than the effect of other treatments. This study expanded our understanding of the risk of sludge contaminated by 6:2 FTOH being used as a fertilizer after composting.
ISSN:0923-9820
1572-9729
DOI:10.1007/s10532-020-09924-9