Loading…

Direct limits for scalar field dark matter from a gravitational-wave detector

The nature of dark matter remains unknown to date; several candidate particles are being considered in a dynamically changing research landscape. Scalar field dark matter is a prominent option that is being explored with precision instruments, such as atomic clocks and optical cavities. Here we repo...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2021-10
Main Authors: Vermeulen, Sander M, Relton, Philip, Grote, Hartmut, Raymond, Vivien, Affeldt, Christoph, Bergamin, Fabio, Bisht, Aparna, Brinkmann, Marc, Danzmann, Karsten, Doravari, Suresh, Kringel, Volker, Lough, James, Lück, Harald, Moritz, Mehmet, Mukund, Nikhil, Nadji, Séverin, Schreiber, Emil, Sorazu, Borja, Strain, Kenneth A, Vahlbruch, Henning, Weinert, Michael, Willke, Benno, Wittel, Holger
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Vermeulen, Sander M
Relton, Philip
Grote, Hartmut
Raymond, Vivien
Affeldt, Christoph
Bergamin, Fabio
Bisht, Aparna
Brinkmann, Marc
Danzmann, Karsten
Doravari, Suresh
Kringel, Volker
Lough, James
Lück, Harald
Moritz, Mehmet
Mukund, Nikhil
Nadji, Séverin
Schreiber, Emil
Sorazu, Borja
Strain, Kenneth A
Vahlbruch, Henning
Weinert, Michael
Willke, Benno
Wittel, Holger
description The nature of dark matter remains unknown to date; several candidate particles are being considered in a dynamically changing research landscape. Scalar field dark matter is a prominent option that is being explored with precision instruments, such as atomic clocks and optical cavities. Here we report on the first direct search for scalar field dark matter utilising a gravitational-wave detector, which operates beyond the quantum shot-noise limit. We set new upper limits for the coupling constants of scalar field dark matter as a function of its mass, by excluding the presence of signals that would be produced through the direct coupling of this dark matter to the beamsplitter of the GEO\(\,\)600 interferometer. The new constraints improve upon bounds from previous direct searches by more than six orders of magnitude, and are in some cases more stringent than limits obtained in tests of the equivalence principle by up to four orders of magnitude. Our work demonstrates that scalar field dark matter can be probed or constrained with direct searches using gravitational-wave detectors, and highlights the potential of quantum-enhanced interferometry for dark matter detection.
doi_str_mv 10.48550/arxiv.2103.03783
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2498818205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2498818205</sourcerecordid><originalsourceid>FETCH-LOGICAL-a525-41653a04345c64ccf5b069fec5d4f049b816b33d1d7d65c7501248825a220b253</originalsourceid><addsrcrecordid>eNotjk1LAzEUAIMgWGp_gLeA511fXvJ2s0epn1Dx0nt5m2QlddfVJK3-fAt6GpjDMEJcKaiNJYIbTj_xWKMCXYNurT4TC9RaVdYgXohVznsAwKZFIr0QL3cxBVfkGKdYshzmJLPjkZMcYhi99Jze5cSlhJNJ8yRZviU-xsIlzh88Vt98DNKHcorM6VKcDzzmsPrnUmwf7rfrp2rz-vi8vt1UTEiVUQ1pBqMNucY4N1APTTcER94MYLreqqbX2ivf-oZcS6DQWIvEiNAj6aW4_st-pvnrEHLZ7edDOt3kHZrOWmURSP8CvWVOiA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2498818205</pqid></control><display><type>article</type><title>Direct limits for scalar field dark matter from a gravitational-wave detector</title><source>Publicly Available Content Database</source><creator>Vermeulen, Sander M ; Relton, Philip ; Grote, Hartmut ; Raymond, Vivien ; Affeldt, Christoph ; Bergamin, Fabio ; Bisht, Aparna ; Brinkmann, Marc ; Danzmann, Karsten ; Doravari, Suresh ; Kringel, Volker ; Lough, James ; Lück, Harald ; Moritz, Mehmet ; Mukund, Nikhil ; Nadji, Séverin ; Schreiber, Emil ; Sorazu, Borja ; Strain, Kenneth A ; Vahlbruch, Henning ; Weinert, Michael ; Willke, Benno ; Wittel, Holger</creator><creatorcontrib>Vermeulen, Sander M ; Relton, Philip ; Grote, Hartmut ; Raymond, Vivien ; Affeldt, Christoph ; Bergamin, Fabio ; Bisht, Aparna ; Brinkmann, Marc ; Danzmann, Karsten ; Doravari, Suresh ; Kringel, Volker ; Lough, James ; Lück, Harald ; Moritz, Mehmet ; Mukund, Nikhil ; Nadji, Séverin ; Schreiber, Emil ; Sorazu, Borja ; Strain, Kenneth A ; Vahlbruch, Henning ; Weinert, Michael ; Willke, Benno ; Wittel, Holger</creatorcontrib><description>The nature of dark matter remains unknown to date; several candidate particles are being considered in a dynamically changing research landscape. Scalar field dark matter is a prominent option that is being explored with precision instruments, such as atomic clocks and optical cavities. Here we report on the first direct search for scalar field dark matter utilising a gravitational-wave detector, which operates beyond the quantum shot-noise limit. We set new upper limits for the coupling constants of scalar field dark matter as a function of its mass, by excluding the presence of signals that would be produced through the direct coupling of this dark matter to the beamsplitter of the GEO\(\,\)600 interferometer. The new constraints improve upon bounds from previous direct searches by more than six orders of magnitude, and are in some cases more stringent than limits obtained in tests of the equivalence principle by up to four orders of magnitude. Our work demonstrates that scalar field dark matter can be probed or constrained with direct searches using gravitational-wave detectors, and highlights the potential of quantum-enhanced interferometry for dark matter detection.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2103.03783</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Atomic clocks ; Constraints ; Coupling ; Dark matter ; Equivalence principle ; Expanding universe theory ; Gravitation ; Gravitational waves ; Scalars ; Searching</subject><ispartof>arXiv.org, 2021-10</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2498818205?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25751,27923,37010,44588</link.rule.ids></links><search><creatorcontrib>Vermeulen, Sander M</creatorcontrib><creatorcontrib>Relton, Philip</creatorcontrib><creatorcontrib>Grote, Hartmut</creatorcontrib><creatorcontrib>Raymond, Vivien</creatorcontrib><creatorcontrib>Affeldt, Christoph</creatorcontrib><creatorcontrib>Bergamin, Fabio</creatorcontrib><creatorcontrib>Bisht, Aparna</creatorcontrib><creatorcontrib>Brinkmann, Marc</creatorcontrib><creatorcontrib>Danzmann, Karsten</creatorcontrib><creatorcontrib>Doravari, Suresh</creatorcontrib><creatorcontrib>Kringel, Volker</creatorcontrib><creatorcontrib>Lough, James</creatorcontrib><creatorcontrib>Lück, Harald</creatorcontrib><creatorcontrib>Moritz, Mehmet</creatorcontrib><creatorcontrib>Mukund, Nikhil</creatorcontrib><creatorcontrib>Nadji, Séverin</creatorcontrib><creatorcontrib>Schreiber, Emil</creatorcontrib><creatorcontrib>Sorazu, Borja</creatorcontrib><creatorcontrib>Strain, Kenneth A</creatorcontrib><creatorcontrib>Vahlbruch, Henning</creatorcontrib><creatorcontrib>Weinert, Michael</creatorcontrib><creatorcontrib>Willke, Benno</creatorcontrib><creatorcontrib>Wittel, Holger</creatorcontrib><title>Direct limits for scalar field dark matter from a gravitational-wave detector</title><title>arXiv.org</title><description>The nature of dark matter remains unknown to date; several candidate particles are being considered in a dynamically changing research landscape. Scalar field dark matter is a prominent option that is being explored with precision instruments, such as atomic clocks and optical cavities. Here we report on the first direct search for scalar field dark matter utilising a gravitational-wave detector, which operates beyond the quantum shot-noise limit. We set new upper limits for the coupling constants of scalar field dark matter as a function of its mass, by excluding the presence of signals that would be produced through the direct coupling of this dark matter to the beamsplitter of the GEO\(\,\)600 interferometer. The new constraints improve upon bounds from previous direct searches by more than six orders of magnitude, and are in some cases more stringent than limits obtained in tests of the equivalence principle by up to four orders of magnitude. Our work demonstrates that scalar field dark matter can be probed or constrained with direct searches using gravitational-wave detectors, and highlights the potential of quantum-enhanced interferometry for dark matter detection.</description><subject>Atomic clocks</subject><subject>Constraints</subject><subject>Coupling</subject><subject>Dark matter</subject><subject>Equivalence principle</subject><subject>Expanding universe theory</subject><subject>Gravitation</subject><subject>Gravitational waves</subject><subject>Scalars</subject><subject>Searching</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjk1LAzEUAIMgWGp_gLeA511fXvJ2s0epn1Dx0nt5m2QlddfVJK3-fAt6GpjDMEJcKaiNJYIbTj_xWKMCXYNurT4TC9RaVdYgXohVznsAwKZFIr0QL3cxBVfkGKdYshzmJLPjkZMcYhi99Jze5cSlhJNJ8yRZviU-xsIlzh88Vt98DNKHcorM6VKcDzzmsPrnUmwf7rfrp2rz-vi8vt1UTEiVUQ1pBqMNucY4N1APTTcER94MYLreqqbX2ivf-oZcS6DQWIvEiNAj6aW4_st-pvnrEHLZ7edDOt3kHZrOWmURSP8CvWVOiA</recordid><startdate>20211018</startdate><enddate>20211018</enddate><creator>Vermeulen, Sander M</creator><creator>Relton, Philip</creator><creator>Grote, Hartmut</creator><creator>Raymond, Vivien</creator><creator>Affeldt, Christoph</creator><creator>Bergamin, Fabio</creator><creator>Bisht, Aparna</creator><creator>Brinkmann, Marc</creator><creator>Danzmann, Karsten</creator><creator>Doravari, Suresh</creator><creator>Kringel, Volker</creator><creator>Lough, James</creator><creator>Lück, Harald</creator><creator>Moritz, Mehmet</creator><creator>Mukund, Nikhil</creator><creator>Nadji, Séverin</creator><creator>Schreiber, Emil</creator><creator>Sorazu, Borja</creator><creator>Strain, Kenneth A</creator><creator>Vahlbruch, Henning</creator><creator>Weinert, Michael</creator><creator>Willke, Benno</creator><creator>Wittel, Holger</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20211018</creationdate><title>Direct limits for scalar field dark matter from a gravitational-wave detector</title><author>Vermeulen, Sander M ; Relton, Philip ; Grote, Hartmut ; Raymond, Vivien ; Affeldt, Christoph ; Bergamin, Fabio ; Bisht, Aparna ; Brinkmann, Marc ; Danzmann, Karsten ; Doravari, Suresh ; Kringel, Volker ; Lough, James ; Lück, Harald ; Moritz, Mehmet ; Mukund, Nikhil ; Nadji, Séverin ; Schreiber, Emil ; Sorazu, Borja ; Strain, Kenneth A ; Vahlbruch, Henning ; Weinert, Michael ; Willke, Benno ; Wittel, Holger</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a525-41653a04345c64ccf5b069fec5d4f049b816b33d1d7d65c7501248825a220b253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Atomic clocks</topic><topic>Constraints</topic><topic>Coupling</topic><topic>Dark matter</topic><topic>Equivalence principle</topic><topic>Expanding universe theory</topic><topic>Gravitation</topic><topic>Gravitational waves</topic><topic>Scalars</topic><topic>Searching</topic><toplevel>online_resources</toplevel><creatorcontrib>Vermeulen, Sander M</creatorcontrib><creatorcontrib>Relton, Philip</creatorcontrib><creatorcontrib>Grote, Hartmut</creatorcontrib><creatorcontrib>Raymond, Vivien</creatorcontrib><creatorcontrib>Affeldt, Christoph</creatorcontrib><creatorcontrib>Bergamin, Fabio</creatorcontrib><creatorcontrib>Bisht, Aparna</creatorcontrib><creatorcontrib>Brinkmann, Marc</creatorcontrib><creatorcontrib>Danzmann, Karsten</creatorcontrib><creatorcontrib>Doravari, Suresh</creatorcontrib><creatorcontrib>Kringel, Volker</creatorcontrib><creatorcontrib>Lough, James</creatorcontrib><creatorcontrib>Lück, Harald</creatorcontrib><creatorcontrib>Moritz, Mehmet</creatorcontrib><creatorcontrib>Mukund, Nikhil</creatorcontrib><creatorcontrib>Nadji, Séverin</creatorcontrib><creatorcontrib>Schreiber, Emil</creatorcontrib><creatorcontrib>Sorazu, Borja</creatorcontrib><creatorcontrib>Strain, Kenneth A</creatorcontrib><creatorcontrib>Vahlbruch, Henning</creatorcontrib><creatorcontrib>Weinert, Michael</creatorcontrib><creatorcontrib>Willke, Benno</creatorcontrib><creatorcontrib>Wittel, Holger</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vermeulen, Sander M</au><au>Relton, Philip</au><au>Grote, Hartmut</au><au>Raymond, Vivien</au><au>Affeldt, Christoph</au><au>Bergamin, Fabio</au><au>Bisht, Aparna</au><au>Brinkmann, Marc</au><au>Danzmann, Karsten</au><au>Doravari, Suresh</au><au>Kringel, Volker</au><au>Lough, James</au><au>Lück, Harald</au><au>Moritz, Mehmet</au><au>Mukund, Nikhil</au><au>Nadji, Séverin</au><au>Schreiber, Emil</au><au>Sorazu, Borja</au><au>Strain, Kenneth A</au><au>Vahlbruch, Henning</au><au>Weinert, Michael</au><au>Willke, Benno</au><au>Wittel, Holger</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct limits for scalar field dark matter from a gravitational-wave detector</atitle><jtitle>arXiv.org</jtitle><date>2021-10-18</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>The nature of dark matter remains unknown to date; several candidate particles are being considered in a dynamically changing research landscape. Scalar field dark matter is a prominent option that is being explored with precision instruments, such as atomic clocks and optical cavities. Here we report on the first direct search for scalar field dark matter utilising a gravitational-wave detector, which operates beyond the quantum shot-noise limit. We set new upper limits for the coupling constants of scalar field dark matter as a function of its mass, by excluding the presence of signals that would be produced through the direct coupling of this dark matter to the beamsplitter of the GEO\(\,\)600 interferometer. The new constraints improve upon bounds from previous direct searches by more than six orders of magnitude, and are in some cases more stringent than limits obtained in tests of the equivalence principle by up to four orders of magnitude. Our work demonstrates that scalar field dark matter can be probed or constrained with direct searches using gravitational-wave detectors, and highlights the potential of quantum-enhanced interferometry for dark matter detection.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2103.03783</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2498818205
source Publicly Available Content Database
subjects Atomic clocks
Constraints
Coupling
Dark matter
Equivalence principle
Expanding universe theory
Gravitation
Gravitational waves
Scalars
Searching
title Direct limits for scalar field dark matter from a gravitational-wave detector
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A10%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20limits%20for%20scalar%20field%20dark%20matter%20from%20a%20gravitational-wave%20detector&rft.jtitle=arXiv.org&rft.au=Vermeulen,%20Sander%20M&rft.date=2021-10-18&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2103.03783&rft_dat=%3Cproquest%3E2498818205%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a525-41653a04345c64ccf5b069fec5d4f049b816b33d1d7d65c7501248825a220b253%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2498818205&rft_id=info:pmid/&rfr_iscdi=true