Loading…
Direct limits for scalar field dark matter from a gravitational-wave detector
The nature of dark matter remains unknown to date; several candidate particles are being considered in a dynamically changing research landscape. Scalar field dark matter is a prominent option that is being explored with precision instruments, such as atomic clocks and optical cavities. Here we repo...
Saved in:
Published in: | arXiv.org 2021-10 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Vermeulen, Sander M Relton, Philip Grote, Hartmut Raymond, Vivien Affeldt, Christoph Bergamin, Fabio Bisht, Aparna Brinkmann, Marc Danzmann, Karsten Doravari, Suresh Kringel, Volker Lough, James Lück, Harald Moritz, Mehmet Mukund, Nikhil Nadji, Séverin Schreiber, Emil Sorazu, Borja Strain, Kenneth A Vahlbruch, Henning Weinert, Michael Willke, Benno Wittel, Holger |
description | The nature of dark matter remains unknown to date; several candidate particles are being considered in a dynamically changing research landscape. Scalar field dark matter is a prominent option that is being explored with precision instruments, such as atomic clocks and optical cavities. Here we report on the first direct search for scalar field dark matter utilising a gravitational-wave detector, which operates beyond the quantum shot-noise limit. We set new upper limits for the coupling constants of scalar field dark matter as a function of its mass, by excluding the presence of signals that would be produced through the direct coupling of this dark matter to the beamsplitter of the GEO\(\,\)600 interferometer. The new constraints improve upon bounds from previous direct searches by more than six orders of magnitude, and are in some cases more stringent than limits obtained in tests of the equivalence principle by up to four orders of magnitude. Our work demonstrates that scalar field dark matter can be probed or constrained with direct searches using gravitational-wave detectors, and highlights the potential of quantum-enhanced interferometry for dark matter detection. |
doi_str_mv | 10.48550/arxiv.2103.03783 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2498818205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2498818205</sourcerecordid><originalsourceid>FETCH-LOGICAL-a525-41653a04345c64ccf5b069fec5d4f049b816b33d1d7d65c7501248825a220b253</originalsourceid><addsrcrecordid>eNotjk1LAzEUAIMgWGp_gLeA511fXvJ2s0epn1Dx0nt5m2QlddfVJK3-fAt6GpjDMEJcKaiNJYIbTj_xWKMCXYNurT4TC9RaVdYgXohVznsAwKZFIr0QL3cxBVfkGKdYshzmJLPjkZMcYhi99Jze5cSlhJNJ8yRZviU-xsIlzh88Vt98DNKHcorM6VKcDzzmsPrnUmwf7rfrp2rz-vi8vt1UTEiVUQ1pBqMNucY4N1APTTcER94MYLreqqbX2ivf-oZcS6DQWIvEiNAj6aW4_st-pvnrEHLZ7edDOt3kHZrOWmURSP8CvWVOiA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2498818205</pqid></control><display><type>article</type><title>Direct limits for scalar field dark matter from a gravitational-wave detector</title><source>Publicly Available Content Database</source><creator>Vermeulen, Sander M ; Relton, Philip ; Grote, Hartmut ; Raymond, Vivien ; Affeldt, Christoph ; Bergamin, Fabio ; Bisht, Aparna ; Brinkmann, Marc ; Danzmann, Karsten ; Doravari, Suresh ; Kringel, Volker ; Lough, James ; Lück, Harald ; Moritz, Mehmet ; Mukund, Nikhil ; Nadji, Séverin ; Schreiber, Emil ; Sorazu, Borja ; Strain, Kenneth A ; Vahlbruch, Henning ; Weinert, Michael ; Willke, Benno ; Wittel, Holger</creator><creatorcontrib>Vermeulen, Sander M ; Relton, Philip ; Grote, Hartmut ; Raymond, Vivien ; Affeldt, Christoph ; Bergamin, Fabio ; Bisht, Aparna ; Brinkmann, Marc ; Danzmann, Karsten ; Doravari, Suresh ; Kringel, Volker ; Lough, James ; Lück, Harald ; Moritz, Mehmet ; Mukund, Nikhil ; Nadji, Séverin ; Schreiber, Emil ; Sorazu, Borja ; Strain, Kenneth A ; Vahlbruch, Henning ; Weinert, Michael ; Willke, Benno ; Wittel, Holger</creatorcontrib><description>The nature of dark matter remains unknown to date; several candidate particles are being considered in a dynamically changing research landscape. Scalar field dark matter is a prominent option that is being explored with precision instruments, such as atomic clocks and optical cavities. Here we report on the first direct search for scalar field dark matter utilising a gravitational-wave detector, which operates beyond the quantum shot-noise limit. We set new upper limits for the coupling constants of scalar field dark matter as a function of its mass, by excluding the presence of signals that would be produced through the direct coupling of this dark matter to the beamsplitter of the GEO\(\,\)600 interferometer. The new constraints improve upon bounds from previous direct searches by more than six orders of magnitude, and are in some cases more stringent than limits obtained in tests of the equivalence principle by up to four orders of magnitude. Our work demonstrates that scalar field dark matter can be probed or constrained with direct searches using gravitational-wave detectors, and highlights the potential of quantum-enhanced interferometry for dark matter detection.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2103.03783</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Atomic clocks ; Constraints ; Coupling ; Dark matter ; Equivalence principle ; Expanding universe theory ; Gravitation ; Gravitational waves ; Scalars ; Searching</subject><ispartof>arXiv.org, 2021-10</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2498818205?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25751,27923,37010,44588</link.rule.ids></links><search><creatorcontrib>Vermeulen, Sander M</creatorcontrib><creatorcontrib>Relton, Philip</creatorcontrib><creatorcontrib>Grote, Hartmut</creatorcontrib><creatorcontrib>Raymond, Vivien</creatorcontrib><creatorcontrib>Affeldt, Christoph</creatorcontrib><creatorcontrib>Bergamin, Fabio</creatorcontrib><creatorcontrib>Bisht, Aparna</creatorcontrib><creatorcontrib>Brinkmann, Marc</creatorcontrib><creatorcontrib>Danzmann, Karsten</creatorcontrib><creatorcontrib>Doravari, Suresh</creatorcontrib><creatorcontrib>Kringel, Volker</creatorcontrib><creatorcontrib>Lough, James</creatorcontrib><creatorcontrib>Lück, Harald</creatorcontrib><creatorcontrib>Moritz, Mehmet</creatorcontrib><creatorcontrib>Mukund, Nikhil</creatorcontrib><creatorcontrib>Nadji, Séverin</creatorcontrib><creatorcontrib>Schreiber, Emil</creatorcontrib><creatorcontrib>Sorazu, Borja</creatorcontrib><creatorcontrib>Strain, Kenneth A</creatorcontrib><creatorcontrib>Vahlbruch, Henning</creatorcontrib><creatorcontrib>Weinert, Michael</creatorcontrib><creatorcontrib>Willke, Benno</creatorcontrib><creatorcontrib>Wittel, Holger</creatorcontrib><title>Direct limits for scalar field dark matter from a gravitational-wave detector</title><title>arXiv.org</title><description>The nature of dark matter remains unknown to date; several candidate particles are being considered in a dynamically changing research landscape. Scalar field dark matter is a prominent option that is being explored with precision instruments, such as atomic clocks and optical cavities. Here we report on the first direct search for scalar field dark matter utilising a gravitational-wave detector, which operates beyond the quantum shot-noise limit. We set new upper limits for the coupling constants of scalar field dark matter as a function of its mass, by excluding the presence of signals that would be produced through the direct coupling of this dark matter to the beamsplitter of the GEO\(\,\)600 interferometer. The new constraints improve upon bounds from previous direct searches by more than six orders of magnitude, and are in some cases more stringent than limits obtained in tests of the equivalence principle by up to four orders of magnitude. Our work demonstrates that scalar field dark matter can be probed or constrained with direct searches using gravitational-wave detectors, and highlights the potential of quantum-enhanced interferometry for dark matter detection.</description><subject>Atomic clocks</subject><subject>Constraints</subject><subject>Coupling</subject><subject>Dark matter</subject><subject>Equivalence principle</subject><subject>Expanding universe theory</subject><subject>Gravitation</subject><subject>Gravitational waves</subject><subject>Scalars</subject><subject>Searching</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjk1LAzEUAIMgWGp_gLeA511fXvJ2s0epn1Dx0nt5m2QlddfVJK3-fAt6GpjDMEJcKaiNJYIbTj_xWKMCXYNurT4TC9RaVdYgXohVznsAwKZFIr0QL3cxBVfkGKdYshzmJLPjkZMcYhi99Jze5cSlhJNJ8yRZviU-xsIlzh88Vt98DNKHcorM6VKcDzzmsPrnUmwf7rfrp2rz-vi8vt1UTEiVUQ1pBqMNucY4N1APTTcER94MYLreqqbX2ivf-oZcS6DQWIvEiNAj6aW4_st-pvnrEHLZ7edDOt3kHZrOWmURSP8CvWVOiA</recordid><startdate>20211018</startdate><enddate>20211018</enddate><creator>Vermeulen, Sander M</creator><creator>Relton, Philip</creator><creator>Grote, Hartmut</creator><creator>Raymond, Vivien</creator><creator>Affeldt, Christoph</creator><creator>Bergamin, Fabio</creator><creator>Bisht, Aparna</creator><creator>Brinkmann, Marc</creator><creator>Danzmann, Karsten</creator><creator>Doravari, Suresh</creator><creator>Kringel, Volker</creator><creator>Lough, James</creator><creator>Lück, Harald</creator><creator>Moritz, Mehmet</creator><creator>Mukund, Nikhil</creator><creator>Nadji, Séverin</creator><creator>Schreiber, Emil</creator><creator>Sorazu, Borja</creator><creator>Strain, Kenneth A</creator><creator>Vahlbruch, Henning</creator><creator>Weinert, Michael</creator><creator>Willke, Benno</creator><creator>Wittel, Holger</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20211018</creationdate><title>Direct limits for scalar field dark matter from a gravitational-wave detector</title><author>Vermeulen, Sander M ; Relton, Philip ; Grote, Hartmut ; Raymond, Vivien ; Affeldt, Christoph ; Bergamin, Fabio ; Bisht, Aparna ; Brinkmann, Marc ; Danzmann, Karsten ; Doravari, Suresh ; Kringel, Volker ; Lough, James ; Lück, Harald ; Moritz, Mehmet ; Mukund, Nikhil ; Nadji, Séverin ; Schreiber, Emil ; Sorazu, Borja ; Strain, Kenneth A ; Vahlbruch, Henning ; Weinert, Michael ; Willke, Benno ; Wittel, Holger</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a525-41653a04345c64ccf5b069fec5d4f049b816b33d1d7d65c7501248825a220b253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Atomic clocks</topic><topic>Constraints</topic><topic>Coupling</topic><topic>Dark matter</topic><topic>Equivalence principle</topic><topic>Expanding universe theory</topic><topic>Gravitation</topic><topic>Gravitational waves</topic><topic>Scalars</topic><topic>Searching</topic><toplevel>online_resources</toplevel><creatorcontrib>Vermeulen, Sander M</creatorcontrib><creatorcontrib>Relton, Philip</creatorcontrib><creatorcontrib>Grote, Hartmut</creatorcontrib><creatorcontrib>Raymond, Vivien</creatorcontrib><creatorcontrib>Affeldt, Christoph</creatorcontrib><creatorcontrib>Bergamin, Fabio</creatorcontrib><creatorcontrib>Bisht, Aparna</creatorcontrib><creatorcontrib>Brinkmann, Marc</creatorcontrib><creatorcontrib>Danzmann, Karsten</creatorcontrib><creatorcontrib>Doravari, Suresh</creatorcontrib><creatorcontrib>Kringel, Volker</creatorcontrib><creatorcontrib>Lough, James</creatorcontrib><creatorcontrib>Lück, Harald</creatorcontrib><creatorcontrib>Moritz, Mehmet</creatorcontrib><creatorcontrib>Mukund, Nikhil</creatorcontrib><creatorcontrib>Nadji, Séverin</creatorcontrib><creatorcontrib>Schreiber, Emil</creatorcontrib><creatorcontrib>Sorazu, Borja</creatorcontrib><creatorcontrib>Strain, Kenneth A</creatorcontrib><creatorcontrib>Vahlbruch, Henning</creatorcontrib><creatorcontrib>Weinert, Michael</creatorcontrib><creatorcontrib>Willke, Benno</creatorcontrib><creatorcontrib>Wittel, Holger</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vermeulen, Sander M</au><au>Relton, Philip</au><au>Grote, Hartmut</au><au>Raymond, Vivien</au><au>Affeldt, Christoph</au><au>Bergamin, Fabio</au><au>Bisht, Aparna</au><au>Brinkmann, Marc</au><au>Danzmann, Karsten</au><au>Doravari, Suresh</au><au>Kringel, Volker</au><au>Lough, James</au><au>Lück, Harald</au><au>Moritz, Mehmet</au><au>Mukund, Nikhil</au><au>Nadji, Séverin</au><au>Schreiber, Emil</au><au>Sorazu, Borja</au><au>Strain, Kenneth A</au><au>Vahlbruch, Henning</au><au>Weinert, Michael</au><au>Willke, Benno</au><au>Wittel, Holger</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct limits for scalar field dark matter from a gravitational-wave detector</atitle><jtitle>arXiv.org</jtitle><date>2021-10-18</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>The nature of dark matter remains unknown to date; several candidate particles are being considered in a dynamically changing research landscape. Scalar field dark matter is a prominent option that is being explored with precision instruments, such as atomic clocks and optical cavities. Here we report on the first direct search for scalar field dark matter utilising a gravitational-wave detector, which operates beyond the quantum shot-noise limit. We set new upper limits for the coupling constants of scalar field dark matter as a function of its mass, by excluding the presence of signals that would be produced through the direct coupling of this dark matter to the beamsplitter of the GEO\(\,\)600 interferometer. The new constraints improve upon bounds from previous direct searches by more than six orders of magnitude, and are in some cases more stringent than limits obtained in tests of the equivalence principle by up to four orders of magnitude. Our work demonstrates that scalar field dark matter can be probed or constrained with direct searches using gravitational-wave detectors, and highlights the potential of quantum-enhanced interferometry for dark matter detection.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2103.03783</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2498818205 |
source | Publicly Available Content Database |
subjects | Atomic clocks Constraints Coupling Dark matter Equivalence principle Expanding universe theory Gravitation Gravitational waves Scalars Searching |
title | Direct limits for scalar field dark matter from a gravitational-wave detector |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A10%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20limits%20for%20scalar%20field%20dark%20matter%20from%20a%20gravitational-wave%20detector&rft.jtitle=arXiv.org&rft.au=Vermeulen,%20Sander%20M&rft.date=2021-10-18&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2103.03783&rft_dat=%3Cproquest%3E2498818205%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a525-41653a04345c64ccf5b069fec5d4f049b816b33d1d7d65c7501248825a220b253%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2498818205&rft_id=info:pmid/&rfr_iscdi=true |