Loading…
Secure Storage Auditing With Efficient Key Updates for Cognitive Industrial IoT Environment
Cognitive computing over big data brings more development opportunities for enterprises and organizations in industrial informatics, and can make better decisions for them when they face data security challenges. To satisfy the requirement of real-time data storage in industrial Internet of Things (...
Saved in:
Published in: | IEEE transactions on industrial informatics 2021-06, Vol.17 (6), p.4238-4247 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c291t-37aeee7ee33a7a079793de770cf02a0c6e8560f9cc8c3a0b1ae33a1da476b05f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c291t-37aeee7ee33a7a079793de770cf02a0c6e8560f9cc8c3a0b1ae33a1da476b05f3 |
container_end_page | 4247 |
container_issue | 6 |
container_start_page | 4238 |
container_title | IEEE transactions on industrial informatics |
container_volume | 17 |
creator | Zheng, Wenying Lai, Chin-Feng He, Debiao Kumar, Neeraj Chen, Bing |
description | Cognitive computing over big data brings more development opportunities for enterprises and organizations in industrial informatics, and can make better decisions for them when they face data security challenges. To satisfy the requirement of real-time data storage in industrial Internet of Things (IoT), the remote unconstrained storage cloud is usually used to store the generated big data. However, the characteristic of semitrust of the cloud service provider determines that the data owners will worry about whether the data stored in cloud computing has been corrupted. In this article, a secure storage auditing is proposed, which supports efficient key updates and can be well used in cognitive industrial IoT environment. Moreover, the proposed basic auditing can be extended to support batch auditing that is suitable for multiple end devices to audit their data blocks simultaneously in practice. In addition, a hybrid data dynamics method is proposed, which employs a hash table to store the data blocks and uses a linked list to locate the operated data block. Compared with previous methods, the data block location time in the proposed data dynamics can be reduced by 40%. The security analysis results demonstrate that the proposed scheme can be proved to be correct, and is secure under computational differ-hellman (CDH) and discrete logarithm (DL) assumptions. |
doi_str_mv | 10.1109/TII.2020.2991204 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2498878097</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9082138</ieee_id><sourcerecordid>2498878097</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-37aeee7ee33a7a079793de770cf02a0c6e8560f9cc8c3a0b1ae33a1da476b05f3</originalsourceid><addsrcrecordid>eNo9kEFPAjEQRhujiYjeTbw08bw4bVm6PRKCupHEAxAPHjalO4slsMW2S8K_twTiaebwvm8mj5BHBgPGQL0synLAgcOAK8U4DK9Ij6khywByuE57nrNMcBC35C6EDYCQIFSPfM_RdB7pPDqv10jHXW2jbdf0y8YfOm0aayy2kX7gkS73tY4YaOM8nbh1m8AD0rKtuxC91VtaugWdtgfrXbtLoXty0-htwIfL7JPl63Qxec9mn2_lZDzLDFcsZkJqRJSIQmipQSqpRI1SgmmAazAjLPIRNMqYwggNK6ZPJKv1UI5WkDeiT57PvXvvfjsMsdq4zrfpZMWHqihkAUomCs6U8S4Ej02193an_bFiUJ0UVklhdVJYXRSmyNM5YtOD_7iCgjNRiD-8_21O</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2498878097</pqid></control><display><type>article</type><title>Secure Storage Auditing With Efficient Key Updates for Cognitive Industrial IoT Environment</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Zheng, Wenying ; Lai, Chin-Feng ; He, Debiao ; Kumar, Neeraj ; Chen, Bing</creator><creatorcontrib>Zheng, Wenying ; Lai, Chin-Feng ; He, Debiao ; Kumar, Neeraj ; Chen, Bing</creatorcontrib><description>Cognitive computing over big data brings more development opportunities for enterprises and organizations in industrial informatics, and can make better decisions for them when they face data security challenges. To satisfy the requirement of real-time data storage in industrial Internet of Things (IoT), the remote unconstrained storage cloud is usually used to store the generated big data. However, the characteristic of semitrust of the cloud service provider determines that the data owners will worry about whether the data stored in cloud computing has been corrupted. In this article, a secure storage auditing is proposed, which supports efficient key updates and can be well used in cognitive industrial IoT environment. Moreover, the proposed basic auditing can be extended to support batch auditing that is suitable for multiple end devices to audit their data blocks simultaneously in practice. In addition, a hybrid data dynamics method is proposed, which employs a hash table to store the data blocks and uses a linked list to locate the operated data block. Compared with previous methods, the data block location time in the proposed data dynamics can be reduced by 40%. The security analysis results demonstrate that the proposed scheme can be proved to be correct, and is secure under computational differ-hellman (CDH) and discrete logarithm (DL) assumptions.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2020.2991204</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Auditing ; Big Data ; Cloud computing ; cognitive computing ; Data storage ; Electronic devices ; Industrial applications ; industrial IoT ; Industries ; Internet of Things ; Memory ; Production ; Security ; Servers</subject><ispartof>IEEE transactions on industrial informatics, 2021-06, Vol.17 (6), p.4238-4247</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-37aeee7ee33a7a079793de770cf02a0c6e8560f9cc8c3a0b1ae33a1da476b05f3</citedby><cites>FETCH-LOGICAL-c291t-37aeee7ee33a7a079793de770cf02a0c6e8560f9cc8c3a0b1ae33a1da476b05f3</cites><orcidid>0000-0002-3020-3947 ; 0000-0003-2225-5090 ; 0000-0002-2863-5441 ; 0000-0001-7138-0272 ; 0000-0002-2446-7436</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9082138$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Zheng, Wenying</creatorcontrib><creatorcontrib>Lai, Chin-Feng</creatorcontrib><creatorcontrib>He, Debiao</creatorcontrib><creatorcontrib>Kumar, Neeraj</creatorcontrib><creatorcontrib>Chen, Bing</creatorcontrib><title>Secure Storage Auditing With Efficient Key Updates for Cognitive Industrial IoT Environment</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>Cognitive computing over big data brings more development opportunities for enterprises and organizations in industrial informatics, and can make better decisions for them when they face data security challenges. To satisfy the requirement of real-time data storage in industrial Internet of Things (IoT), the remote unconstrained storage cloud is usually used to store the generated big data. However, the characteristic of semitrust of the cloud service provider determines that the data owners will worry about whether the data stored in cloud computing has been corrupted. In this article, a secure storage auditing is proposed, which supports efficient key updates and can be well used in cognitive industrial IoT environment. Moreover, the proposed basic auditing can be extended to support batch auditing that is suitable for multiple end devices to audit their data blocks simultaneously in practice. In addition, a hybrid data dynamics method is proposed, which employs a hash table to store the data blocks and uses a linked list to locate the operated data block. Compared with previous methods, the data block location time in the proposed data dynamics can be reduced by 40%. The security analysis results demonstrate that the proposed scheme can be proved to be correct, and is secure under computational differ-hellman (CDH) and discrete logarithm (DL) assumptions.</description><subject>Auditing</subject><subject>Big Data</subject><subject>Cloud computing</subject><subject>cognitive computing</subject><subject>Data storage</subject><subject>Electronic devices</subject><subject>Industrial applications</subject><subject>industrial IoT</subject><subject>Industries</subject><subject>Internet of Things</subject><subject>Memory</subject><subject>Production</subject><subject>Security</subject><subject>Servers</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kEFPAjEQRhujiYjeTbw08bw4bVm6PRKCupHEAxAPHjalO4slsMW2S8K_twTiaebwvm8mj5BHBgPGQL0synLAgcOAK8U4DK9Ij6khywByuE57nrNMcBC35C6EDYCQIFSPfM_RdB7pPDqv10jHXW2jbdf0y8YfOm0aayy2kX7gkS73tY4YaOM8nbh1m8AD0rKtuxC91VtaugWdtgfrXbtLoXty0-htwIfL7JPl63Qxec9mn2_lZDzLDFcsZkJqRJSIQmipQSqpRI1SgmmAazAjLPIRNMqYwggNK6ZPJKv1UI5WkDeiT57PvXvvfjsMsdq4zrfpZMWHqihkAUomCs6U8S4Ej02193an_bFiUJ0UVklhdVJYXRSmyNM5YtOD_7iCgjNRiD-8_21O</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Zheng, Wenying</creator><creator>Lai, Chin-Feng</creator><creator>He, Debiao</creator><creator>Kumar, Neeraj</creator><creator>Chen, Bing</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3020-3947</orcidid><orcidid>https://orcid.org/0000-0003-2225-5090</orcidid><orcidid>https://orcid.org/0000-0002-2863-5441</orcidid><orcidid>https://orcid.org/0000-0001-7138-0272</orcidid><orcidid>https://orcid.org/0000-0002-2446-7436</orcidid></search><sort><creationdate>20210601</creationdate><title>Secure Storage Auditing With Efficient Key Updates for Cognitive Industrial IoT Environment</title><author>Zheng, Wenying ; Lai, Chin-Feng ; He, Debiao ; Kumar, Neeraj ; Chen, Bing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-37aeee7ee33a7a079793de770cf02a0c6e8560f9cc8c3a0b1ae33a1da476b05f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Auditing</topic><topic>Big Data</topic><topic>Cloud computing</topic><topic>cognitive computing</topic><topic>Data storage</topic><topic>Electronic devices</topic><topic>Industrial applications</topic><topic>industrial IoT</topic><topic>Industries</topic><topic>Internet of Things</topic><topic>Memory</topic><topic>Production</topic><topic>Security</topic><topic>Servers</topic><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Wenying</creatorcontrib><creatorcontrib>Lai, Chin-Feng</creatorcontrib><creatorcontrib>He, Debiao</creatorcontrib><creatorcontrib>Kumar, Neeraj</creatorcontrib><creatorcontrib>Chen, Bing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Wenying</au><au>Lai, Chin-Feng</au><au>He, Debiao</au><au>Kumar, Neeraj</au><au>Chen, Bing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Secure Storage Auditing With Efficient Key Updates for Cognitive Industrial IoT Environment</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>17</volume><issue>6</issue><spage>4238</spage><epage>4247</epage><pages>4238-4247</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>Cognitive computing over big data brings more development opportunities for enterprises and organizations in industrial informatics, and can make better decisions for them when they face data security challenges. To satisfy the requirement of real-time data storage in industrial Internet of Things (IoT), the remote unconstrained storage cloud is usually used to store the generated big data. However, the characteristic of semitrust of the cloud service provider determines that the data owners will worry about whether the data stored in cloud computing has been corrupted. In this article, a secure storage auditing is proposed, which supports efficient key updates and can be well used in cognitive industrial IoT environment. Moreover, the proposed basic auditing can be extended to support batch auditing that is suitable for multiple end devices to audit their data blocks simultaneously in practice. In addition, a hybrid data dynamics method is proposed, which employs a hash table to store the data blocks and uses a linked list to locate the operated data block. Compared with previous methods, the data block location time in the proposed data dynamics can be reduced by 40%. The security analysis results demonstrate that the proposed scheme can be proved to be correct, and is secure under computational differ-hellman (CDH) and discrete logarithm (DL) assumptions.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2020.2991204</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3020-3947</orcidid><orcidid>https://orcid.org/0000-0003-2225-5090</orcidid><orcidid>https://orcid.org/0000-0002-2863-5441</orcidid><orcidid>https://orcid.org/0000-0001-7138-0272</orcidid><orcidid>https://orcid.org/0000-0002-2446-7436</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1551-3203 |
ispartof | IEEE transactions on industrial informatics, 2021-06, Vol.17 (6), p.4238-4247 |
issn | 1551-3203 1941-0050 |
language | eng |
recordid | cdi_proquest_journals_2498878097 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Auditing Big Data Cloud computing cognitive computing Data storage Electronic devices Industrial applications industrial IoT Industries Internet of Things Memory Production Security Servers |
title | Secure Storage Auditing With Efficient Key Updates for Cognitive Industrial IoT Environment |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T17%3A43%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Secure%20Storage%20Auditing%20With%20Efficient%20Key%20Updates%20for%20Cognitive%20Industrial%20IoT%20Environment&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Zheng,%20Wenying&rft.date=2021-06-01&rft.volume=17&rft.issue=6&rft.spage=4238&rft.epage=4247&rft.pages=4238-4247&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2020.2991204&rft_dat=%3Cproquest_ieee_%3E2498878097%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-37aeee7ee33a7a079793de770cf02a0c6e8560f9cc8c3a0b1ae33a1da476b05f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2498878097&rft_id=info:pmid/&rft_ieee_id=9082138&rfr_iscdi=true |