Loading…

Secure Storage Auditing With Efficient Key Updates for Cognitive Industrial IoT Environment

Cognitive computing over big data brings more development opportunities for enterprises and organizations in industrial informatics, and can make better decisions for them when they face data security challenges. To satisfy the requirement of real-time data storage in industrial Internet of Things (...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industrial informatics 2021-06, Vol.17 (6), p.4238-4247
Main Authors: Zheng, Wenying, Lai, Chin-Feng, He, Debiao, Kumar, Neeraj, Chen, Bing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-37aeee7ee33a7a079793de770cf02a0c6e8560f9cc8c3a0b1ae33a1da476b05f3
cites cdi_FETCH-LOGICAL-c291t-37aeee7ee33a7a079793de770cf02a0c6e8560f9cc8c3a0b1ae33a1da476b05f3
container_end_page 4247
container_issue 6
container_start_page 4238
container_title IEEE transactions on industrial informatics
container_volume 17
creator Zheng, Wenying
Lai, Chin-Feng
He, Debiao
Kumar, Neeraj
Chen, Bing
description Cognitive computing over big data brings more development opportunities for enterprises and organizations in industrial informatics, and can make better decisions for them when they face data security challenges. To satisfy the requirement of real-time data storage in industrial Internet of Things (IoT), the remote unconstrained storage cloud is usually used to store the generated big data. However, the characteristic of semitrust of the cloud service provider determines that the data owners will worry about whether the data stored in cloud computing has been corrupted. In this article, a secure storage auditing is proposed, which supports efficient key updates and can be well used in cognitive industrial IoT environment. Moreover, the proposed basic auditing can be extended to support batch auditing that is suitable for multiple end devices to audit their data blocks simultaneously in practice. In addition, a hybrid data dynamics method is proposed, which employs a hash table to store the data blocks and uses a linked list to locate the operated data block. Compared with previous methods, the data block location time in the proposed data dynamics can be reduced by 40%. The security analysis results demonstrate that the proposed scheme can be proved to be correct, and is secure under computational differ-hellman (CDH) and discrete logarithm (DL) assumptions.
doi_str_mv 10.1109/TII.2020.2991204
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2498878097</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9082138</ieee_id><sourcerecordid>2498878097</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-37aeee7ee33a7a079793de770cf02a0c6e8560f9cc8c3a0b1ae33a1da476b05f3</originalsourceid><addsrcrecordid>eNo9kEFPAjEQRhujiYjeTbw08bw4bVm6PRKCupHEAxAPHjalO4slsMW2S8K_twTiaebwvm8mj5BHBgPGQL0synLAgcOAK8U4DK9Ij6khywByuE57nrNMcBC35C6EDYCQIFSPfM_RdB7pPDqv10jHXW2jbdf0y8YfOm0aayy2kX7gkS73tY4YaOM8nbh1m8AD0rKtuxC91VtaugWdtgfrXbtLoXty0-htwIfL7JPl63Qxec9mn2_lZDzLDFcsZkJqRJSIQmipQSqpRI1SgmmAazAjLPIRNMqYwggNK6ZPJKv1UI5WkDeiT57PvXvvfjsMsdq4zrfpZMWHqihkAUomCs6U8S4Ej02193an_bFiUJ0UVklhdVJYXRSmyNM5YtOD_7iCgjNRiD-8_21O</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2498878097</pqid></control><display><type>article</type><title>Secure Storage Auditing With Efficient Key Updates for Cognitive Industrial IoT Environment</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Zheng, Wenying ; Lai, Chin-Feng ; He, Debiao ; Kumar, Neeraj ; Chen, Bing</creator><creatorcontrib>Zheng, Wenying ; Lai, Chin-Feng ; He, Debiao ; Kumar, Neeraj ; Chen, Bing</creatorcontrib><description>Cognitive computing over big data brings more development opportunities for enterprises and organizations in industrial informatics, and can make better decisions for them when they face data security challenges. To satisfy the requirement of real-time data storage in industrial Internet of Things (IoT), the remote unconstrained storage cloud is usually used to store the generated big data. However, the characteristic of semitrust of the cloud service provider determines that the data owners will worry about whether the data stored in cloud computing has been corrupted. In this article, a secure storage auditing is proposed, which supports efficient key updates and can be well used in cognitive industrial IoT environment. Moreover, the proposed basic auditing can be extended to support batch auditing that is suitable for multiple end devices to audit their data blocks simultaneously in practice. In addition, a hybrid data dynamics method is proposed, which employs a hash table to store the data blocks and uses a linked list to locate the operated data block. Compared with previous methods, the data block location time in the proposed data dynamics can be reduced by 40%. The security analysis results demonstrate that the proposed scheme can be proved to be correct, and is secure under computational differ-hellman (CDH) and discrete logarithm (DL) assumptions.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2020.2991204</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Auditing ; Big Data ; Cloud computing ; cognitive computing ; Data storage ; Electronic devices ; Industrial applications ; industrial IoT ; Industries ; Internet of Things ; Memory ; Production ; Security ; Servers</subject><ispartof>IEEE transactions on industrial informatics, 2021-06, Vol.17 (6), p.4238-4247</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-37aeee7ee33a7a079793de770cf02a0c6e8560f9cc8c3a0b1ae33a1da476b05f3</citedby><cites>FETCH-LOGICAL-c291t-37aeee7ee33a7a079793de770cf02a0c6e8560f9cc8c3a0b1ae33a1da476b05f3</cites><orcidid>0000-0002-3020-3947 ; 0000-0003-2225-5090 ; 0000-0002-2863-5441 ; 0000-0001-7138-0272 ; 0000-0002-2446-7436</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9082138$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Zheng, Wenying</creatorcontrib><creatorcontrib>Lai, Chin-Feng</creatorcontrib><creatorcontrib>He, Debiao</creatorcontrib><creatorcontrib>Kumar, Neeraj</creatorcontrib><creatorcontrib>Chen, Bing</creatorcontrib><title>Secure Storage Auditing With Efficient Key Updates for Cognitive Industrial IoT Environment</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>Cognitive computing over big data brings more development opportunities for enterprises and organizations in industrial informatics, and can make better decisions for them when they face data security challenges. To satisfy the requirement of real-time data storage in industrial Internet of Things (IoT), the remote unconstrained storage cloud is usually used to store the generated big data. However, the characteristic of semitrust of the cloud service provider determines that the data owners will worry about whether the data stored in cloud computing has been corrupted. In this article, a secure storage auditing is proposed, which supports efficient key updates and can be well used in cognitive industrial IoT environment. Moreover, the proposed basic auditing can be extended to support batch auditing that is suitable for multiple end devices to audit their data blocks simultaneously in practice. In addition, a hybrid data dynamics method is proposed, which employs a hash table to store the data blocks and uses a linked list to locate the operated data block. Compared with previous methods, the data block location time in the proposed data dynamics can be reduced by 40%. The security analysis results demonstrate that the proposed scheme can be proved to be correct, and is secure under computational differ-hellman (CDH) and discrete logarithm (DL) assumptions.</description><subject>Auditing</subject><subject>Big Data</subject><subject>Cloud computing</subject><subject>cognitive computing</subject><subject>Data storage</subject><subject>Electronic devices</subject><subject>Industrial applications</subject><subject>industrial IoT</subject><subject>Industries</subject><subject>Internet of Things</subject><subject>Memory</subject><subject>Production</subject><subject>Security</subject><subject>Servers</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kEFPAjEQRhujiYjeTbw08bw4bVm6PRKCupHEAxAPHjalO4slsMW2S8K_twTiaebwvm8mj5BHBgPGQL0synLAgcOAK8U4DK9Ij6khywByuE57nrNMcBC35C6EDYCQIFSPfM_RdB7pPDqv10jHXW2jbdf0y8YfOm0aayy2kX7gkS73tY4YaOM8nbh1m8AD0rKtuxC91VtaugWdtgfrXbtLoXty0-htwIfL7JPl63Qxec9mn2_lZDzLDFcsZkJqRJSIQmipQSqpRI1SgmmAazAjLPIRNMqYwggNK6ZPJKv1UI5WkDeiT57PvXvvfjsMsdq4zrfpZMWHqihkAUomCs6U8S4Ej02193an_bFiUJ0UVklhdVJYXRSmyNM5YtOD_7iCgjNRiD-8_21O</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Zheng, Wenying</creator><creator>Lai, Chin-Feng</creator><creator>He, Debiao</creator><creator>Kumar, Neeraj</creator><creator>Chen, Bing</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3020-3947</orcidid><orcidid>https://orcid.org/0000-0003-2225-5090</orcidid><orcidid>https://orcid.org/0000-0002-2863-5441</orcidid><orcidid>https://orcid.org/0000-0001-7138-0272</orcidid><orcidid>https://orcid.org/0000-0002-2446-7436</orcidid></search><sort><creationdate>20210601</creationdate><title>Secure Storage Auditing With Efficient Key Updates for Cognitive Industrial IoT Environment</title><author>Zheng, Wenying ; Lai, Chin-Feng ; He, Debiao ; Kumar, Neeraj ; Chen, Bing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-37aeee7ee33a7a079793de770cf02a0c6e8560f9cc8c3a0b1ae33a1da476b05f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Auditing</topic><topic>Big Data</topic><topic>Cloud computing</topic><topic>cognitive computing</topic><topic>Data storage</topic><topic>Electronic devices</topic><topic>Industrial applications</topic><topic>industrial IoT</topic><topic>Industries</topic><topic>Internet of Things</topic><topic>Memory</topic><topic>Production</topic><topic>Security</topic><topic>Servers</topic><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Wenying</creatorcontrib><creatorcontrib>Lai, Chin-Feng</creatorcontrib><creatorcontrib>He, Debiao</creatorcontrib><creatorcontrib>Kumar, Neeraj</creatorcontrib><creatorcontrib>Chen, Bing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Wenying</au><au>Lai, Chin-Feng</au><au>He, Debiao</au><au>Kumar, Neeraj</au><au>Chen, Bing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Secure Storage Auditing With Efficient Key Updates for Cognitive Industrial IoT Environment</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>17</volume><issue>6</issue><spage>4238</spage><epage>4247</epage><pages>4238-4247</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>Cognitive computing over big data brings more development opportunities for enterprises and organizations in industrial informatics, and can make better decisions for them when they face data security challenges. To satisfy the requirement of real-time data storage in industrial Internet of Things (IoT), the remote unconstrained storage cloud is usually used to store the generated big data. However, the characteristic of semitrust of the cloud service provider determines that the data owners will worry about whether the data stored in cloud computing has been corrupted. In this article, a secure storage auditing is proposed, which supports efficient key updates and can be well used in cognitive industrial IoT environment. Moreover, the proposed basic auditing can be extended to support batch auditing that is suitable for multiple end devices to audit their data blocks simultaneously in practice. In addition, a hybrid data dynamics method is proposed, which employs a hash table to store the data blocks and uses a linked list to locate the operated data block. Compared with previous methods, the data block location time in the proposed data dynamics can be reduced by 40%. The security analysis results demonstrate that the proposed scheme can be proved to be correct, and is secure under computational differ-hellman (CDH) and discrete logarithm (DL) assumptions.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2020.2991204</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3020-3947</orcidid><orcidid>https://orcid.org/0000-0003-2225-5090</orcidid><orcidid>https://orcid.org/0000-0002-2863-5441</orcidid><orcidid>https://orcid.org/0000-0001-7138-0272</orcidid><orcidid>https://orcid.org/0000-0002-2446-7436</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1551-3203
ispartof IEEE transactions on industrial informatics, 2021-06, Vol.17 (6), p.4238-4247
issn 1551-3203
1941-0050
language eng
recordid cdi_proquest_journals_2498878097
source IEEE Electronic Library (IEL) Journals
subjects Auditing
Big Data
Cloud computing
cognitive computing
Data storage
Electronic devices
Industrial applications
industrial IoT
Industries
Internet of Things
Memory
Production
Security
Servers
title Secure Storage Auditing With Efficient Key Updates for Cognitive Industrial IoT Environment
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T17%3A43%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Secure%20Storage%20Auditing%20With%20Efficient%20Key%20Updates%20for%20Cognitive%20Industrial%20IoT%20Environment&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Zheng,%20Wenying&rft.date=2021-06-01&rft.volume=17&rft.issue=6&rft.spage=4238&rft.epage=4247&rft.pages=4238-4247&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2020.2991204&rft_dat=%3Cproquest_ieee_%3E2498878097%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-37aeee7ee33a7a079793de770cf02a0c6e8560f9cc8c3a0b1ae33a1da476b05f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2498878097&rft_id=info:pmid/&rft_ieee_id=9082138&rfr_iscdi=true