Loading…
Classical algorithms for quantum mean values
Quantum algorithms hold the promise of solving certain computational problems dramatically faster than their classical counterparts. The latest generation of quantum processors with ~50 qubits are expected to be at the brink of outperforming classical computers. However, due to the lack of fault tol...
Saved in:
Published in: | Nature physics 2021-03, Vol.17 (3), p.337-341 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-e7a9a996606afe6bc9efc9af89fee3c5931008fb3cf971ce4fcbecdd5402e0993 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-e7a9a996606afe6bc9efc9af89fee3c5931008fb3cf971ce4fcbecdd5402e0993 |
container_end_page | 341 |
container_issue | 3 |
container_start_page | 337 |
container_title | Nature physics |
container_volume | 17 |
creator | Bravyi, Sergey Gosset, David Movassagh, Ramis |
description | Quantum algorithms hold the promise of solving certain computational problems dramatically faster than their classical counterparts. The latest generation of quantum processors with ~50 qubits are expected to be at the brink of outperforming classical computers. However, due to the lack of fault tolerance, the qubits can be operated for only a few time steps, making the quantum circuits shallow in depth. Variational quantum algorithms are leading candidates in the effort to find shallow-depth quantum algorithms that outperform classical computers. Here we consider the task of computing the mean values of multi-qubit observables, which is a cornerstone of variational quantum algorithms for optimization, machine learning and the simulation of quantum many-body systems. We develop sub-exponential time classical algorithms for solving the quantum mean value problem for general classes of quantum observables and constant-depth quantum circuits. In the special case of geometrically local two-dimensional quantum circuits, the runtime of our algorithm scales linearly with the number of qubits. Our results demonstrate that appropriate choices of circuit parameters such as geometric locality and depth are essential to obtain quantum speed-ups based on variational quantum algorithms.
Finding expectation values is a key step in variational quantum algorithms that are hoped to provide a near-term quantum advantage. Bravyi et al. show that a classical approximation is possible when the quantum circuits are limited to constant depth. |
doi_str_mv | 10.1038/s41567-020-01109-8 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2499400942</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2499400942</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-e7a9a996606afe6bc9efc9af89fee3c5931008fb3cf971ce4fcbecdd5402e0993</originalsourceid><addsrcrecordid>eNp9kMtKxEAQRRtRcBz9AVcBt7ZWP_KopQQdhQE3um46PdVjhjxmuhPBvzca0Z2rqsU998Jh7FLAjQBV3EYt0iznIIGDEIC8OGILkeuUS12I498_V6fsLMYdgJaZUAt2XTY2xtrZJrHNtg_18NbGxPchOYy2G8Y2acl2ybttRorn7MTbJtLFz12y14f7l_KRr59XT-XdmjslcOCUW7SIWQaZ9ZRVDsk7tL5AT6RcikoAFL5SzmMuHGnvKnKbTapBEiCqJbuae_ehP0y7g9n1Y-imSSM1ogZALaeUnFMu9DEG8mYf6taGDyPAfFkxsxUzWTHfVkwxQWqG4hTuthT-qv-hPgFD5GUz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2499400942</pqid></control><display><type>article</type><title>Classical algorithms for quantum mean values</title><source>Nature</source><creator>Bravyi, Sergey ; Gosset, David ; Movassagh, Ramis</creator><creatorcontrib>Bravyi, Sergey ; Gosset, David ; Movassagh, Ramis</creatorcontrib><description>Quantum algorithms hold the promise of solving certain computational problems dramatically faster than their classical counterparts. The latest generation of quantum processors with ~50 qubits are expected to be at the brink of outperforming classical computers. However, due to the lack of fault tolerance, the qubits can be operated for only a few time steps, making the quantum circuits shallow in depth. Variational quantum algorithms are leading candidates in the effort to find shallow-depth quantum algorithms that outperform classical computers. Here we consider the task of computing the mean values of multi-qubit observables, which is a cornerstone of variational quantum algorithms for optimization, machine learning and the simulation of quantum many-body systems. We develop sub-exponential time classical algorithms for solving the quantum mean value problem for general classes of quantum observables and constant-depth quantum circuits. In the special case of geometrically local two-dimensional quantum circuits, the runtime of our algorithm scales linearly with the number of qubits. Our results demonstrate that appropriate choices of circuit parameters such as geometric locality and depth are essential to obtain quantum speed-ups based on variational quantum algorithms.
Finding expectation values is a key step in variational quantum algorithms that are hoped to provide a near-term quantum advantage. Bravyi et al. show that a classical approximation is possible when the quantum circuits are limited to constant depth.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/s41567-020-01109-8</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/483/2802 ; 639/766/483/3926 ; 639/766/483/481 ; Algorithms ; Atomic ; Circuits ; Classical and Continuum Physics ; Complex Systems ; Condensed Matter Physics ; Fault tolerance ; Machine learning ; Mathematical and Computational Physics ; Molecular ; Optical and Plasma Physics ; Optimization ; Physics ; Physics and Astronomy ; Qubits (quantum computing) ; Run time (computers) ; Theoretical</subject><ispartof>Nature physics, 2021-03, Vol.17 (3), p.337-341</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-e7a9a996606afe6bc9efc9af89fee3c5931008fb3cf971ce4fcbecdd5402e0993</citedby><cites>FETCH-LOGICAL-c319t-e7a9a996606afe6bc9efc9af89fee3c5931008fb3cf971ce4fcbecdd5402e0993</cites><orcidid>0000-0003-3975-2253 ; 0000-0002-9187-8147</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Bravyi, Sergey</creatorcontrib><creatorcontrib>Gosset, David</creatorcontrib><creatorcontrib>Movassagh, Ramis</creatorcontrib><title>Classical algorithms for quantum mean values</title><title>Nature physics</title><addtitle>Nat. Phys</addtitle><description>Quantum algorithms hold the promise of solving certain computational problems dramatically faster than their classical counterparts. The latest generation of quantum processors with ~50 qubits are expected to be at the brink of outperforming classical computers. However, due to the lack of fault tolerance, the qubits can be operated for only a few time steps, making the quantum circuits shallow in depth. Variational quantum algorithms are leading candidates in the effort to find shallow-depth quantum algorithms that outperform classical computers. Here we consider the task of computing the mean values of multi-qubit observables, which is a cornerstone of variational quantum algorithms for optimization, machine learning and the simulation of quantum many-body systems. We develop sub-exponential time classical algorithms for solving the quantum mean value problem for general classes of quantum observables and constant-depth quantum circuits. In the special case of geometrically local two-dimensional quantum circuits, the runtime of our algorithm scales linearly with the number of qubits. Our results demonstrate that appropriate choices of circuit parameters such as geometric locality and depth are essential to obtain quantum speed-ups based on variational quantum algorithms.
Finding expectation values is a key step in variational quantum algorithms that are hoped to provide a near-term quantum advantage. Bravyi et al. show that a classical approximation is possible when the quantum circuits are limited to constant depth.</description><subject>639/766/483/2802</subject><subject>639/766/483/3926</subject><subject>639/766/483/481</subject><subject>Algorithms</subject><subject>Atomic</subject><subject>Circuits</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Fault tolerance</subject><subject>Machine learning</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Optimization</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Qubits (quantum computing)</subject><subject>Run time (computers)</subject><subject>Theoretical</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxEAQRRtRcBz9AVcBt7ZWP_KopQQdhQE3um46PdVjhjxmuhPBvzca0Z2rqsU998Jh7FLAjQBV3EYt0iznIIGDEIC8OGILkeuUS12I498_V6fsLMYdgJaZUAt2XTY2xtrZJrHNtg_18NbGxPchOYy2G8Y2acl2ybttRorn7MTbJtLFz12y14f7l_KRr59XT-XdmjslcOCUW7SIWQaZ9ZRVDsk7tL5AT6RcikoAFL5SzmMuHGnvKnKbTapBEiCqJbuae_ehP0y7g9n1Y-imSSM1ogZALaeUnFMu9DEG8mYf6taGDyPAfFkxsxUzWTHfVkwxQWqG4hTuthT-qv-hPgFD5GUz</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Bravyi, Sergey</creator><creator>Gosset, David</creator><creator>Movassagh, Ramis</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-3975-2253</orcidid><orcidid>https://orcid.org/0000-0002-9187-8147</orcidid></search><sort><creationdate>20210301</creationdate><title>Classical algorithms for quantum mean values</title><author>Bravyi, Sergey ; Gosset, David ; Movassagh, Ramis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-e7a9a996606afe6bc9efc9af89fee3c5931008fb3cf971ce4fcbecdd5402e0993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>639/766/483/2802</topic><topic>639/766/483/3926</topic><topic>639/766/483/481</topic><topic>Algorithms</topic><topic>Atomic</topic><topic>Circuits</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Fault tolerance</topic><topic>Machine learning</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Optimization</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Qubits (quantum computing)</topic><topic>Run time (computers)</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bravyi, Sergey</creatorcontrib><creatorcontrib>Gosset, David</creatorcontrib><creatorcontrib>Movassagh, Ramis</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bravyi, Sergey</au><au>Gosset, David</au><au>Movassagh, Ramis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classical algorithms for quantum mean values</atitle><jtitle>Nature physics</jtitle><stitle>Nat. Phys</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>17</volume><issue>3</issue><spage>337</spage><epage>341</epage><pages>337-341</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>Quantum algorithms hold the promise of solving certain computational problems dramatically faster than their classical counterparts. The latest generation of quantum processors with ~50 qubits are expected to be at the brink of outperforming classical computers. However, due to the lack of fault tolerance, the qubits can be operated for only a few time steps, making the quantum circuits shallow in depth. Variational quantum algorithms are leading candidates in the effort to find shallow-depth quantum algorithms that outperform classical computers. Here we consider the task of computing the mean values of multi-qubit observables, which is a cornerstone of variational quantum algorithms for optimization, machine learning and the simulation of quantum many-body systems. We develop sub-exponential time classical algorithms for solving the quantum mean value problem for general classes of quantum observables and constant-depth quantum circuits. In the special case of geometrically local two-dimensional quantum circuits, the runtime of our algorithm scales linearly with the number of qubits. Our results demonstrate that appropriate choices of circuit parameters such as geometric locality and depth are essential to obtain quantum speed-ups based on variational quantum algorithms.
Finding expectation values is a key step in variational quantum algorithms that are hoped to provide a near-term quantum advantage. Bravyi et al. show that a classical approximation is possible when the quantum circuits are limited to constant depth.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41567-020-01109-8</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-3975-2253</orcidid><orcidid>https://orcid.org/0000-0002-9187-8147</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1745-2473 |
ispartof | Nature physics, 2021-03, Vol.17 (3), p.337-341 |
issn | 1745-2473 1745-2481 |
language | eng |
recordid | cdi_proquest_journals_2499400942 |
source | Nature |
subjects | 639/766/483/2802 639/766/483/3926 639/766/483/481 Algorithms Atomic Circuits Classical and Continuum Physics Complex Systems Condensed Matter Physics Fault tolerance Machine learning Mathematical and Computational Physics Molecular Optical and Plasma Physics Optimization Physics Physics and Astronomy Qubits (quantum computing) Run time (computers) Theoretical |
title | Classical algorithms for quantum mean values |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T02%3A01%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classical%20algorithms%20for%20quantum%20mean%20values&rft.jtitle=Nature%20physics&rft.au=Bravyi,%20Sergey&rft.date=2021-03-01&rft.volume=17&rft.issue=3&rft.spage=337&rft.epage=341&rft.pages=337-341&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/s41567-020-01109-8&rft_dat=%3Cproquest_cross%3E2499400942%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-e7a9a996606afe6bc9efc9af89fee3c5931008fb3cf971ce4fcbecdd5402e0993%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2499400942&rft_id=info:pmid/&rfr_iscdi=true |