Loading…
Wetting regulates autophagy of phaseseparated compartments and the cytosol
Compartmentalization of cellular material in droplet-like structures is a hallmark of liquid-liquid phase separation1,2, but the mechanisms of droplet removal are poorly understood. Evidence suggests that droplets can be degraded by autophagy3,4, a highly conserved degradation system in which membra...
Saved in:
Published in: | Nature (London) 2021-03, Vol.591 (7848), p.142-3 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 3 |
container_issue | 7848 |
container_start_page | 142 |
container_title | Nature (London) |
container_volume | 591 |
creator | Agudo-Canalejo, Jaime Schultz, Sebastian W Chino, Haruka Migliano, Simona M Saito, Chieko Koyama-Honda, Ikuko Stenmark, Harald Brech, Andreas May, Alexander I Mizushima, Noboru Knorr, Roland L |
description | Compartmentalization of cellular material in droplet-like structures is a hallmark of liquid-liquid phase separation1,2, but the mechanisms of droplet removal are poorly understood. Evidence suggests that droplets can be degraded by autophagy3,4, a highly conserved degradation system in which membrane sheets bend to isolate portions of the cytoplasm within double-membrane autophagosomes5-7. Here we examine how autophagosomes sequester droplets that contain the protein p62 (also known as SQSTM1) in living cells, and demonstrate that double-membrane, autophagosome-like vesicles form at the surface of protein-free droplets in vitro through partial wetting. A minimal physical model shows that droplet surface tension supports the formation of membrane sheets. The model also predicts that bending sheets either divide droplets for piecemeal sequestration or sequester entire droplets. We find that autophagosomal sequestration is robust to variations in the droplet-sheet adhesion strength. However, the two sides of partially wetted sheets are exposed to different environments, which can determine the bending direction of autophagosomal sheets. Our discovery of this interplay between the material properties of droplets and membrane sheets enables us to elucidate the mechanisms that underpin droplet autophagy, or 'fluidophagy'. Furthermore, we uncover a switching mechanism that allows droplets to act as liquid assembly platforms for cytosol-degrading autophagosomes8 or as specific autophagy substrates9-11. We propose that droplet-mediated autophagy represents a previously undescribed class of processes that are driven by elastocapillarity, highlighting the importance of wetting in cytosolic organization. |
doi_str_mv | 10.1038/s41586-020-2992-3 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2499458321</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2499458321</sourcerecordid><originalsourceid>FETCH-proquest_journals_24994583213</originalsourceid><addsrcrecordid>eNqNistqwzAQAEVIoU7aD-hN0LOa1cO2fC4tpedAjkY4G6fBlhzv-uC_rw79gJ5mYEaIFw1vGqw_kNOlrxQYUKZpjLIbUWhXV8pVvt6KAsB4Bd5Wj2JHdAOAUteuEN8nZP6JvZyxX4bASDIsnKZr6FeZLjILIeEU5tzOsktjVh4xch7jWfIVZbdyojQ8iYdLGAif_7gXr58fx_cvNc3pviBxe0vLHHNqjWsaV3prtP3f9Qvfq0Rx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2499458321</pqid></control><display><type>article</type><title>Wetting regulates autophagy of phaseseparated compartments and the cytosol</title><source>Nature</source><creator>Agudo-Canalejo, Jaime ; Schultz, Sebastian W ; Chino, Haruka ; Migliano, Simona M ; Saito, Chieko ; Koyama-Honda, Ikuko ; Stenmark, Harald ; Brech, Andreas ; May, Alexander I ; Mizushima, Noboru ; Knorr, Roland L</creator><creatorcontrib>Agudo-Canalejo, Jaime ; Schultz, Sebastian W ; Chino, Haruka ; Migliano, Simona M ; Saito, Chieko ; Koyama-Honda, Ikuko ; Stenmark, Harald ; Brech, Andreas ; May, Alexander I ; Mizushima, Noboru ; Knorr, Roland L</creatorcontrib><description>Compartmentalization of cellular material in droplet-like structures is a hallmark of liquid-liquid phase separation1,2, but the mechanisms of droplet removal are poorly understood. Evidence suggests that droplets can be degraded by autophagy3,4, a highly conserved degradation system in which membrane sheets bend to isolate portions of the cytoplasm within double-membrane autophagosomes5-7. Here we examine how autophagosomes sequester droplets that contain the protein p62 (also known as SQSTM1) in living cells, and demonstrate that double-membrane, autophagosome-like vesicles form at the surface of protein-free droplets in vitro through partial wetting. A minimal physical model shows that droplet surface tension supports the formation of membrane sheets. The model also predicts that bending sheets either divide droplets for piecemeal sequestration or sequester entire droplets. We find that autophagosomal sequestration is robust to variations in the droplet-sheet adhesion strength. However, the two sides of partially wetted sheets are exposed to different environments, which can determine the bending direction of autophagosomal sheets. Our discovery of this interplay between the material properties of droplets and membrane sheets enables us to elucidate the mechanisms that underpin droplet autophagy, or 'fluidophagy'. Furthermore, we uncover a switching mechanism that allows droplets to act as liquid assembly platforms for cytosol-degrading autophagosomes8 or as specific autophagy substrates9-11. We propose that droplet-mediated autophagy represents a previously undescribed class of processes that are driven by elastocapillarity, highlighting the importance of wetting in cytosolic organization.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-020-2992-3</identifier><language>eng</language><publisher>London: Nature Publishing Group</publisher><subject>Adhesive strength ; Autophagy ; Bending ; Cellular structure ; Contact angle ; Cytoplasm ; Cytosol ; Degradation ; Droplets ; Energy ; Liquid phases ; Material properties ; Membrane vesicles ; Membranes ; Microscopy ; Phagocytosis ; Phagosomes ; Proteins ; Sheets ; Surface tension ; Wetting</subject><ispartof>Nature (London), 2021-03, Vol.591 (7848), p.142-3</ispartof><rights>Copyright Nature Publishing Group Mar 4, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Agudo-Canalejo, Jaime</creatorcontrib><creatorcontrib>Schultz, Sebastian W</creatorcontrib><creatorcontrib>Chino, Haruka</creatorcontrib><creatorcontrib>Migliano, Simona M</creatorcontrib><creatorcontrib>Saito, Chieko</creatorcontrib><creatorcontrib>Koyama-Honda, Ikuko</creatorcontrib><creatorcontrib>Stenmark, Harald</creatorcontrib><creatorcontrib>Brech, Andreas</creatorcontrib><creatorcontrib>May, Alexander I</creatorcontrib><creatorcontrib>Mizushima, Noboru</creatorcontrib><creatorcontrib>Knorr, Roland L</creatorcontrib><title>Wetting regulates autophagy of phaseseparated compartments and the cytosol</title><title>Nature (London)</title><description>Compartmentalization of cellular material in droplet-like structures is a hallmark of liquid-liquid phase separation1,2, but the mechanisms of droplet removal are poorly understood. Evidence suggests that droplets can be degraded by autophagy3,4, a highly conserved degradation system in which membrane sheets bend to isolate portions of the cytoplasm within double-membrane autophagosomes5-7. Here we examine how autophagosomes sequester droplets that contain the protein p62 (also known as SQSTM1) in living cells, and demonstrate that double-membrane, autophagosome-like vesicles form at the surface of protein-free droplets in vitro through partial wetting. A minimal physical model shows that droplet surface tension supports the formation of membrane sheets. The model also predicts that bending sheets either divide droplets for piecemeal sequestration or sequester entire droplets. We find that autophagosomal sequestration is robust to variations in the droplet-sheet adhesion strength. However, the two sides of partially wetted sheets are exposed to different environments, which can determine the bending direction of autophagosomal sheets. Our discovery of this interplay between the material properties of droplets and membrane sheets enables us to elucidate the mechanisms that underpin droplet autophagy, or 'fluidophagy'. Furthermore, we uncover a switching mechanism that allows droplets to act as liquid assembly platforms for cytosol-degrading autophagosomes8 or as specific autophagy substrates9-11. We propose that droplet-mediated autophagy represents a previously undescribed class of processes that are driven by elastocapillarity, highlighting the importance of wetting in cytosolic organization.</description><subject>Adhesive strength</subject><subject>Autophagy</subject><subject>Bending</subject><subject>Cellular structure</subject><subject>Contact angle</subject><subject>Cytoplasm</subject><subject>Cytosol</subject><subject>Degradation</subject><subject>Droplets</subject><subject>Energy</subject><subject>Liquid phases</subject><subject>Material properties</subject><subject>Membrane vesicles</subject><subject>Membranes</subject><subject>Microscopy</subject><subject>Phagocytosis</subject><subject>Phagosomes</subject><subject>Proteins</subject><subject>Sheets</subject><subject>Surface tension</subject><subject>Wetting</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNistqwzAQAEVIoU7aD-hN0LOa1cO2fC4tpedAjkY4G6fBlhzv-uC_rw79gJ5mYEaIFw1vGqw_kNOlrxQYUKZpjLIbUWhXV8pVvt6KAsB4Bd5Wj2JHdAOAUteuEN8nZP6JvZyxX4bASDIsnKZr6FeZLjILIeEU5tzOsktjVh4xch7jWfIVZbdyojQ8iYdLGAif_7gXr58fx_cvNc3pviBxe0vLHHNqjWsaV3prtP3f9Qvfq0Rx</recordid><startdate>20210304</startdate><enddate>20210304</enddate><creator>Agudo-Canalejo, Jaime</creator><creator>Schultz, Sebastian W</creator><creator>Chino, Haruka</creator><creator>Migliano, Simona M</creator><creator>Saito, Chieko</creator><creator>Koyama-Honda, Ikuko</creator><creator>Stenmark, Harald</creator><creator>Brech, Andreas</creator><creator>May, Alexander I</creator><creator>Mizushima, Noboru</creator><creator>Knorr, Roland L</creator><general>Nature Publishing Group</general><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope></search><sort><creationdate>20210304</creationdate><title>Wetting regulates autophagy of phaseseparated compartments and the cytosol</title><author>Agudo-Canalejo, Jaime ; Schultz, Sebastian W ; Chino, Haruka ; Migliano, Simona M ; Saito, Chieko ; Koyama-Honda, Ikuko ; Stenmark, Harald ; Brech, Andreas ; May, Alexander I ; Mizushima, Noboru ; Knorr, Roland L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24994583213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adhesive strength</topic><topic>Autophagy</topic><topic>Bending</topic><topic>Cellular structure</topic><topic>Contact angle</topic><topic>Cytoplasm</topic><topic>Cytosol</topic><topic>Degradation</topic><topic>Droplets</topic><topic>Energy</topic><topic>Liquid phases</topic><topic>Material properties</topic><topic>Membrane vesicles</topic><topic>Membranes</topic><topic>Microscopy</topic><topic>Phagocytosis</topic><topic>Phagosomes</topic><topic>Proteins</topic><topic>Sheets</topic><topic>Surface tension</topic><topic>Wetting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agudo-Canalejo, Jaime</creatorcontrib><creatorcontrib>Schultz, Sebastian W</creatorcontrib><creatorcontrib>Chino, Haruka</creatorcontrib><creatorcontrib>Migliano, Simona M</creatorcontrib><creatorcontrib>Saito, Chieko</creatorcontrib><creatorcontrib>Koyama-Honda, Ikuko</creatorcontrib><creatorcontrib>Stenmark, Harald</creatorcontrib><creatorcontrib>Brech, Andreas</creatorcontrib><creatorcontrib>May, Alexander I</creatorcontrib><creatorcontrib>Mizushima, Noboru</creatorcontrib><creatorcontrib>Knorr, Roland L</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Agudo-Canalejo, Jaime</au><au>Schultz, Sebastian W</au><au>Chino, Haruka</au><au>Migliano, Simona M</au><au>Saito, Chieko</au><au>Koyama-Honda, Ikuko</au><au>Stenmark, Harald</au><au>Brech, Andreas</au><au>May, Alexander I</au><au>Mizushima, Noboru</au><au>Knorr, Roland L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wetting regulates autophagy of phaseseparated compartments and the cytosol</atitle><jtitle>Nature (London)</jtitle><date>2021-03-04</date><risdate>2021</risdate><volume>591</volume><issue>7848</issue><spage>142</spage><epage>3</epage><pages>142-3</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Compartmentalization of cellular material in droplet-like structures is a hallmark of liquid-liquid phase separation1,2, but the mechanisms of droplet removal are poorly understood. Evidence suggests that droplets can be degraded by autophagy3,4, a highly conserved degradation system in which membrane sheets bend to isolate portions of the cytoplasm within double-membrane autophagosomes5-7. Here we examine how autophagosomes sequester droplets that contain the protein p62 (also known as SQSTM1) in living cells, and demonstrate that double-membrane, autophagosome-like vesicles form at the surface of protein-free droplets in vitro through partial wetting. A minimal physical model shows that droplet surface tension supports the formation of membrane sheets. The model also predicts that bending sheets either divide droplets for piecemeal sequestration or sequester entire droplets. We find that autophagosomal sequestration is robust to variations in the droplet-sheet adhesion strength. However, the two sides of partially wetted sheets are exposed to different environments, which can determine the bending direction of autophagosomal sheets. Our discovery of this interplay between the material properties of droplets and membrane sheets enables us to elucidate the mechanisms that underpin droplet autophagy, or 'fluidophagy'. Furthermore, we uncover a switching mechanism that allows droplets to act as liquid assembly platforms for cytosol-degrading autophagosomes8 or as specific autophagy substrates9-11. We propose that droplet-mediated autophagy represents a previously undescribed class of processes that are driven by elastocapillarity, highlighting the importance of wetting in cytosolic organization.</abstract><cop>London</cop><pub>Nature Publishing Group</pub><doi>10.1038/s41586-020-2992-3</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2021-03, Vol.591 (7848), p.142-3 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_journals_2499458321 |
source | Nature |
subjects | Adhesive strength Autophagy Bending Cellular structure Contact angle Cytoplasm Cytosol Degradation Droplets Energy Liquid phases Material properties Membrane vesicles Membranes Microscopy Phagocytosis Phagosomes Proteins Sheets Surface tension Wetting |
title | Wetting regulates autophagy of phaseseparated compartments and the cytosol |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T18%3A01%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wetting%20regulates%20autophagy%20of%20phaseseparated%20compartments%20and%20the%20cytosol&rft.jtitle=Nature%20(London)&rft.au=Agudo-Canalejo,%20Jaime&rft.date=2021-03-04&rft.volume=591&rft.issue=7848&rft.spage=142&rft.epage=3&rft.pages=142-3&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-020-2992-3&rft_dat=%3Cproquest%3E2499458321%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_24994583213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2499458321&rft_id=info:pmid/&rfr_iscdi=true |