Loading…

Learning adaptive spatial regularization and aberrance repression correlation filters for visual tracking

This paper proposes a correlation filter tracking algorithm based on adaptive spatial regularization and aberrance repression aiming at the problem that the spatial regularization weight of the background-aware correlation filter is fixed and does not adapt to the change of the target, and the probl...

Full description

Saved in:
Bibliographic Details
Published in:Guang Dian Gong Cheng = Opto-Electronic Engineering 2021-01, Vol.48 (1), p.200068
Main Authors: Wang, Ye, Liu, Qiang, Qin Linbo, Teng Qizhi, He Xiaohai
Format: Article
Language:chi ; eng
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 1
container_start_page 200068
container_title Guang Dian Gong Cheng = Opto-Electronic Engineering
container_volume 48
creator Wang, Ye
Liu, Qiang
Qin Linbo
Teng Qizhi
He Xiaohai
description This paper proposes a correlation filter tracking algorithm based on adaptive spatial regularization and aberrance repression aiming at the problem that the spatial regularization weight of the background-aware correlation filter is fixed and does not adapt to the change of the target, and the problem that enlarging search area may introduce background noise, decreasing the discrimination ability of filters. First, FHOG features, CN features, and gray features are extracted to enhance the algorithm's ability to express the target. Second, aberrance repression terms are added to the target function to constrain the response map of the current frame, and to enhance the filter's discrimination ability to alleviate the filter model degradation. Finally, adaptive spatial regularization terms are added to the objective function to make the spatial regularization weights being updated as the objective changes, so that the filter can make full use of the target's diversity information. This paper involves experiments
doi_str_mv 10.12086/oee.2021.200068
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2499935822</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2499935822</sourcerecordid><originalsourceid>FETCH-proquest_journals_24999358223</originalsourceid><addsrcrecordid>eNqNjTELwjAUhDMoKOruGHBWX1Kt7SyKg6ODW3nWV4mGpL6kDv56A_oDXO44vuNOiKmChdJQ5EtPtNCgVRKAvOiJoQLI5mtQ54GYhGAuACtdbop8MxTmSMjOuJvEK7bRvEiGFqNBK5lunUU27xS9k-iuEi_EjK6mBFumtJVA7ZnJfkuNsZE4yMazfJnQpZnIWD_SwVj0G7SBJj8fidl-d9oe5i37Z0chVnffsUuo0quyLLN1oXX2X-sD8AdPtw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2499935822</pqid></control><display><type>article</type><title>Learning adaptive spatial regularization and aberrance repression correlation filters for visual tracking</title><source>Publicly Available Content Database</source><creator>Wang, Ye ; Liu, Qiang ; Qin Linbo ; Teng Qizhi ; He Xiaohai</creator><creatorcontrib>Wang, Ye ; Liu, Qiang ; Qin Linbo ; Teng Qizhi ; He Xiaohai</creatorcontrib><description>This paper proposes a correlation filter tracking algorithm based on adaptive spatial regularization and aberrance repression aiming at the problem that the spatial regularization weight of the background-aware correlation filter is fixed and does not adapt to the change of the target, and the problem that enlarging search area may introduce background noise, decreasing the discrimination ability of filters. First, FHOG features, CN features, and gray features are extracted to enhance the algorithm's ability to express the target. Second, aberrance repression terms are added to the target function to constrain the response map of the current frame, and to enhance the filter's discrimination ability to alleviate the filter model degradation. Finally, adaptive spatial regularization terms are added to the objective function to make the spatial regularization weights being updated as the objective changes, so that the filter can make full use of the target's diversity information. This paper involves experiments</description><identifier>ISSN: 1003-501X</identifier><identifier>DOI: 10.12086/oee.2021.200068</identifier><language>chi ; eng</language><publisher>Chengdu: Editorial Office of Opto-Electronic Advances</publisher><subject>Adaptive algorithms ; Adaptive filters ; Background noise ; Correlation ; Discrimination ; Feature extraction ; International conferences ; Occlusion ; Optical tracking ; Pattern recognition ; Regularization</subject><ispartof>Guang Dian Gong Cheng = Opto-Electronic Engineering, 2021-01, Vol.48 (1), p.200068</ispartof><rights>2021. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at http://www.oejournal.org/Item/Term.html</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2499935822/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2499935822?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Wang, Ye</creatorcontrib><creatorcontrib>Liu, Qiang</creatorcontrib><creatorcontrib>Qin Linbo</creatorcontrib><creatorcontrib>Teng Qizhi</creatorcontrib><creatorcontrib>He Xiaohai</creatorcontrib><title>Learning adaptive spatial regularization and aberrance repression correlation filters for visual tracking</title><title>Guang Dian Gong Cheng = Opto-Electronic Engineering</title><description>This paper proposes a correlation filter tracking algorithm based on adaptive spatial regularization and aberrance repression aiming at the problem that the spatial regularization weight of the background-aware correlation filter is fixed and does not adapt to the change of the target, and the problem that enlarging search area may introduce background noise, decreasing the discrimination ability of filters. First, FHOG features, CN features, and gray features are extracted to enhance the algorithm's ability to express the target. Second, aberrance repression terms are added to the target function to constrain the response map of the current frame, and to enhance the filter's discrimination ability to alleviate the filter model degradation. Finally, adaptive spatial regularization terms are added to the objective function to make the spatial regularization weights being updated as the objective changes, so that the filter can make full use of the target's diversity information. This paper involves experiments</description><subject>Adaptive algorithms</subject><subject>Adaptive filters</subject><subject>Background noise</subject><subject>Correlation</subject><subject>Discrimination</subject><subject>Feature extraction</subject><subject>International conferences</subject><subject>Occlusion</subject><subject>Optical tracking</subject><subject>Pattern recognition</subject><subject>Regularization</subject><issn>1003-501X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjTELwjAUhDMoKOruGHBWX1Kt7SyKg6ODW3nWV4mGpL6kDv56A_oDXO44vuNOiKmChdJQ5EtPtNCgVRKAvOiJoQLI5mtQ54GYhGAuACtdbop8MxTmSMjOuJvEK7bRvEiGFqNBK5lunUU27xS9k-iuEi_EjK6mBFumtJVA7ZnJfkuNsZE4yMazfJnQpZnIWD_SwVj0G7SBJj8fidl-d9oe5i37Z0chVnffsUuo0quyLLN1oXX2X-sD8AdPtw</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Wang, Ye</creator><creator>Liu, Qiang</creator><creator>Qin Linbo</creator><creator>Teng Qizhi</creator><creator>He Xiaohai</creator><general>Editorial Office of Opto-Electronic Advances</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BVBZV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210101</creationdate><title>Learning adaptive spatial regularization and aberrance repression correlation filters for visual tracking</title><author>Wang, Ye ; Liu, Qiang ; Qin Linbo ; Teng Qizhi ; He Xiaohai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24999358223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>Adaptive algorithms</topic><topic>Adaptive filters</topic><topic>Background noise</topic><topic>Correlation</topic><topic>Discrimination</topic><topic>Feature extraction</topic><topic>International conferences</topic><topic>Occlusion</topic><topic>Optical tracking</topic><topic>Pattern recognition</topic><topic>Regularization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Ye</creatorcontrib><creatorcontrib>Liu, Qiang</creatorcontrib><creatorcontrib>Qin Linbo</creatorcontrib><creatorcontrib>Teng Qizhi</creatorcontrib><creatorcontrib>He Xiaohai</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>East &amp; South Asia Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>Guang Dian Gong Cheng = Opto-Electronic Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Ye</au><au>Liu, Qiang</au><au>Qin Linbo</au><au>Teng Qizhi</au><au>He Xiaohai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning adaptive spatial regularization and aberrance repression correlation filters for visual tracking</atitle><jtitle>Guang Dian Gong Cheng = Opto-Electronic Engineering</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>48</volume><issue>1</issue><spage>200068</spage><pages>200068-</pages><issn>1003-501X</issn><abstract>This paper proposes a correlation filter tracking algorithm based on adaptive spatial regularization and aberrance repression aiming at the problem that the spatial regularization weight of the background-aware correlation filter is fixed and does not adapt to the change of the target, and the problem that enlarging search area may introduce background noise, decreasing the discrimination ability of filters. First, FHOG features, CN features, and gray features are extracted to enhance the algorithm's ability to express the target. Second, aberrance repression terms are added to the target function to constrain the response map of the current frame, and to enhance the filter's discrimination ability to alleviate the filter model degradation. Finally, adaptive spatial regularization terms are added to the objective function to make the spatial regularization weights being updated as the objective changes, so that the filter can make full use of the target's diversity information. This paper involves experiments</abstract><cop>Chengdu</cop><pub>Editorial Office of Opto-Electronic Advances</pub><doi>10.12086/oee.2021.200068</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1003-501X
ispartof Guang Dian Gong Cheng = Opto-Electronic Engineering, 2021-01, Vol.48 (1), p.200068
issn 1003-501X
language chi ; eng
recordid cdi_proquest_journals_2499935822
source Publicly Available Content Database
subjects Adaptive algorithms
Adaptive filters
Background noise
Correlation
Discrimination
Feature extraction
International conferences
Occlusion
Optical tracking
Pattern recognition
Regularization
title Learning adaptive spatial regularization and aberrance repression correlation filters for visual tracking
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A57%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20adaptive%20spatial%20regularization%20and%20aberrance%20repression%20correlation%20filters%20for%20visual%20tracking&rft.jtitle=Guang%20Dian%20Gong%20Cheng%20=%20Opto-Electronic%20Engineering&rft.au=Wang,%20Ye&rft.date=2021-01-01&rft.volume=48&rft.issue=1&rft.spage=200068&rft.pages=200068-&rft.issn=1003-501X&rft_id=info:doi/10.12086/oee.2021.200068&rft_dat=%3Cproquest%3E2499935822%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_24999358223%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2499935822&rft_id=info:pmid/&rfr_iscdi=true