Loading…

The Uncertainty of a Residual Life Indicator Measurement by the Thermal Method for a Respirator Cartridge

Protection devices for respiratory organs with filtering and adsorption elements based on solid, particularly chemical, sorbents are examined. In order to ensure reliable operation of the specified respiratory device, it is necessary to monitor their residual life indicator. Factors are analyzed for...

Full description

Saved in:
Bibliographic Details
Published in:Measurement techniques 2021-02, Vol.63 (11), p.899-903
Main Authors: Balabanov, P. V., Ryazanov, I. V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c380t-43aa7f1f4028b59a54ea5c8b069952ee061b4f2724314b74247c3cf70e6529943
container_end_page 903
container_issue 11
container_start_page 899
container_title Measurement techniques
container_volume 63
creator Balabanov, P. V.
Ryazanov, I. V.
description Protection devices for respiratory organs with filtering and adsorption elements based on solid, particularly chemical, sorbents are examined. In order to ensure reliable operation of the specified respiratory device, it is necessary to monitor their residual life indicator. Factors are analyzed for the uncertainty of indirect measurement of the residual life indicator of the filtering and absorptive products, in the form of a plate and operating under conditions of convective blowoff with cleaning air. It is shown that for sorbent plates based on potassium superoxide KO 2 0.8 mm thick, with relative humidity of the air 60–90%, and carbon dioxide CO 2 concentration 1–4%, the primary uncertainty factor of an indirect measurement of the residual life indicator is the Biot number Bi, which characterizes the conditions of heat exchange from the surface of the plate. It has been experimentally established that for Bi = 0–0.08, the primary factor is up to 30% of the total measurement uncertainty of the residual life indicator.
doi_str_mv 10.1007/s11018-021-01867-8
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2499987365</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A654612697</galeid><sourcerecordid>A654612697</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-43aa7f1f4028b59a54ea5c8b069952ee061b4f2724314b74247c3cf70e6529943</originalsourceid><addsrcrecordid>eNp9kU1rGzEQhkVoIG7SP9CTIKccNtW3Vsdg0sTgUEiTs9BqR46CvetIWqj_fRVvoORS5jAwPM_MwIvQd0quKSH6R6aU0LYhjDa1K920J2hBpeZNa4j6ghZECt5Qo9kZ-przKyGEa2UWKD69AH4ePKTi4lAOeAzY4UfIsZ_cFq9jALwa-uhdGRN-AJenBDsYCu4OuFS3-mlXyQcoL2OPQ6WO_j6mo7J0qaTYb-ACnQa3zfDto5-j55-3T8v7Zv3rbrW8WTeet6Q0gjunAw2CsLaTxkkBTvq2I8oYyQCIop0ITDPBqei0YEJ77oMmoCQzRvBzdDnv3afxbYJc7Os4paGetEwYY1rNlazU9Uxt3BZsHMJYkvO1ethFPw4QYp3fKCkUZcroKlx9EipT4E_ZuClnu_r9-JllM-vTmHOCYPcp7lw6WErse152zsvWvOwxL9tWic9SrvCwgfTv7_9YfwF54pYq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2499987365</pqid></control><display><type>article</type><title>The Uncertainty of a Residual Life Indicator Measurement by the Thermal Method for a Respirator Cartridge</title><source>Springer Nature</source><creator>Balabanov, P. V. ; Ryazanov, I. V.</creator><creatorcontrib>Balabanov, P. V. ; Ryazanov, I. V.</creatorcontrib><description>Protection devices for respiratory organs with filtering and adsorption elements based on solid, particularly chemical, sorbents are examined. In order to ensure reliable operation of the specified respiratory device, it is necessary to monitor their residual life indicator. Factors are analyzed for the uncertainty of indirect measurement of the residual life indicator of the filtering and absorptive products, in the form of a plate and operating under conditions of convective blowoff with cleaning air. It is shown that for sorbent plates based on potassium superoxide KO 2 0.8 mm thick, with relative humidity of the air 60–90%, and carbon dioxide CO 2 concentration 1–4%, the primary uncertainty factor of an indirect measurement of the residual life indicator is the Biot number Bi, which characterizes the conditions of heat exchange from the surface of the plate. It has been experimentally established that for Bi = 0–0.08, the primary factor is up to 30% of the total measurement uncertainty of the residual life indicator.</description><identifier>ISSN: 0543-1972</identifier><identifier>EISSN: 1573-8906</identifier><identifier>DOI: 10.1007/s11018-021-01867-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Absorptivity ; Analytical Chemistry ; Biot number ; Carbon dioxide ; Carbon dioxide concentration ; Cartridges ; Characterization and Evaluation of Materials ; Filtration ; Heat exchange ; Measurement Science and Instrumentation ; Organs ; Physical Chemistry ; Physics ; Physics and Astronomy ; Relative humidity ; Sorbents ; Thermophysical Measurements ; Uncertainty analysis</subject><ispartof>Measurement techniques, 2021-02, Vol.63 (11), p.899-903</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c380t-43aa7f1f4028b59a54ea5c8b069952ee061b4f2724314b74247c3cf70e6529943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Balabanov, P. V.</creatorcontrib><creatorcontrib>Ryazanov, I. V.</creatorcontrib><title>The Uncertainty of a Residual Life Indicator Measurement by the Thermal Method for a Respirator Cartridge</title><title>Measurement techniques</title><addtitle>Meas Tech</addtitle><description>Protection devices for respiratory organs with filtering and adsorption elements based on solid, particularly chemical, sorbents are examined. In order to ensure reliable operation of the specified respiratory device, it is necessary to monitor their residual life indicator. Factors are analyzed for the uncertainty of indirect measurement of the residual life indicator of the filtering and absorptive products, in the form of a plate and operating under conditions of convective blowoff with cleaning air. It is shown that for sorbent plates based on potassium superoxide KO 2 0.8 mm thick, with relative humidity of the air 60–90%, and carbon dioxide CO 2 concentration 1–4%, the primary uncertainty factor of an indirect measurement of the residual life indicator is the Biot number Bi, which characterizes the conditions of heat exchange from the surface of the plate. It has been experimentally established that for Bi = 0–0.08, the primary factor is up to 30% of the total measurement uncertainty of the residual life indicator.</description><subject>Absorptivity</subject><subject>Analytical Chemistry</subject><subject>Biot number</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide concentration</subject><subject>Cartridges</subject><subject>Characterization and Evaluation of Materials</subject><subject>Filtration</subject><subject>Heat exchange</subject><subject>Measurement Science and Instrumentation</subject><subject>Organs</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Relative humidity</subject><subject>Sorbents</subject><subject>Thermophysical Measurements</subject><subject>Uncertainty analysis</subject><issn>0543-1972</issn><issn>1573-8906</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kU1rGzEQhkVoIG7SP9CTIKccNtW3Vsdg0sTgUEiTs9BqR46CvetIWqj_fRVvoORS5jAwPM_MwIvQd0quKSH6R6aU0LYhjDa1K920J2hBpeZNa4j6ghZECt5Qo9kZ-przKyGEa2UWKD69AH4ePKTi4lAOeAzY4UfIsZ_cFq9jALwa-uhdGRN-AJenBDsYCu4OuFS3-mlXyQcoL2OPQ6WO_j6mo7J0qaTYb-ACnQa3zfDto5-j55-3T8v7Zv3rbrW8WTeet6Q0gjunAw2CsLaTxkkBTvq2I8oYyQCIop0ITDPBqei0YEJ77oMmoCQzRvBzdDnv3afxbYJc7Os4paGetEwYY1rNlazU9Uxt3BZsHMJYkvO1ethFPw4QYp3fKCkUZcroKlx9EipT4E_ZuClnu_r9-JllM-vTmHOCYPcp7lw6WErse152zsvWvOwxL9tWic9SrvCwgfTv7_9YfwF54pYq</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Balabanov, P. V.</creator><creator>Ryazanov, I. V.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope></search><sort><creationdate>20210201</creationdate><title>The Uncertainty of a Residual Life Indicator Measurement by the Thermal Method for a Respirator Cartridge</title><author>Balabanov, P. V. ; Ryazanov, I. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-43aa7f1f4028b59a54ea5c8b069952ee061b4f2724314b74247c3cf70e6529943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Absorptivity</topic><topic>Analytical Chemistry</topic><topic>Biot number</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide concentration</topic><topic>Cartridges</topic><topic>Characterization and Evaluation of Materials</topic><topic>Filtration</topic><topic>Heat exchange</topic><topic>Measurement Science and Instrumentation</topic><topic>Organs</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Relative humidity</topic><topic>Sorbents</topic><topic>Thermophysical Measurements</topic><topic>Uncertainty analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Balabanov, P. V.</creatorcontrib><creatorcontrib>Ryazanov, I. V.</creatorcontrib><collection>CrossRef</collection><collection>Gale in Context: Science</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Measurement techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Balabanov, P. V.</au><au>Ryazanov, I. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Uncertainty of a Residual Life Indicator Measurement by the Thermal Method for a Respirator Cartridge</atitle><jtitle>Measurement techniques</jtitle><stitle>Meas Tech</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>63</volume><issue>11</issue><spage>899</spage><epage>903</epage><pages>899-903</pages><issn>0543-1972</issn><eissn>1573-8906</eissn><abstract>Protection devices for respiratory organs with filtering and adsorption elements based on solid, particularly chemical, sorbents are examined. In order to ensure reliable operation of the specified respiratory device, it is necessary to monitor their residual life indicator. Factors are analyzed for the uncertainty of indirect measurement of the residual life indicator of the filtering and absorptive products, in the form of a plate and operating under conditions of convective blowoff with cleaning air. It is shown that for sorbent plates based on potassium superoxide KO 2 0.8 mm thick, with relative humidity of the air 60–90%, and carbon dioxide CO 2 concentration 1–4%, the primary uncertainty factor of an indirect measurement of the residual life indicator is the Biot number Bi, which characterizes the conditions of heat exchange from the surface of the plate. It has been experimentally established that for Bi = 0–0.08, the primary factor is up to 30% of the total measurement uncertainty of the residual life indicator.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11018-021-01867-8</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0543-1972
ispartof Measurement techniques, 2021-02, Vol.63 (11), p.899-903
issn 0543-1972
1573-8906
language eng
recordid cdi_proquest_journals_2499987365
source Springer Nature
subjects Absorptivity
Analytical Chemistry
Biot number
Carbon dioxide
Carbon dioxide concentration
Cartridges
Characterization and Evaluation of Materials
Filtration
Heat exchange
Measurement Science and Instrumentation
Organs
Physical Chemistry
Physics
Physics and Astronomy
Relative humidity
Sorbents
Thermophysical Measurements
Uncertainty analysis
title The Uncertainty of a Residual Life Indicator Measurement by the Thermal Method for a Respirator Cartridge
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T00%3A40%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Uncertainty%20of%20a%20Residual%20Life%20Indicator%20Measurement%20by%20the%20Thermal%20Method%20for%20a%20Respirator%20Cartridge&rft.jtitle=Measurement%20techniques&rft.au=Balabanov,%20P.%20V.&rft.date=2021-02-01&rft.volume=63&rft.issue=11&rft.spage=899&rft.epage=903&rft.pages=899-903&rft.issn=0543-1972&rft.eissn=1573-8906&rft_id=info:doi/10.1007/s11018-021-01867-8&rft_dat=%3Cgale_proqu%3EA654612697%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c380t-43aa7f1f4028b59a54ea5c8b069952ee061b4f2724314b74247c3cf70e6529943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2499987365&rft_id=info:pmid/&rft_galeid=A654612697&rfr_iscdi=true