Loading…
A novel corpus‐based computing method for handling critical word‐ranking issues: An example of COVID‐19 research articles
A corpus is a massive body of structured textual data that are stored and operated electronically. It usually combines with statistics, machine learning algorithms, or artificial intelligence (AI) technologies to explore the semantic relationship between lexical units, and beneficial when applied to...
Saved in:
Published in: | International Journal of Intelligent Systems 2021-07, Vol.36 (7), p.3190-3216 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4713-63f9a8315710a5093b3e9fe411a329442c13cef45f71fdd9ce3c016e1e72cdd23 |
---|---|
cites | cdi_FETCH-LOGICAL-c4713-63f9a8315710a5093b3e9fe411a329442c13cef45f71fdd9ce3c016e1e72cdd23 |
container_end_page | 3216 |
container_issue | 7 |
container_start_page | 3190 |
container_title | International Journal of Intelligent Systems |
container_volume | 36 |
creator | Chen, Liang‐Ching Chang, Kuei‐Hu |
description | A corpus is a massive body of structured textual data that are stored and operated electronically. It usually combines with statistics, machine learning algorithms, or artificial intelligence (AI) technologies to explore the semantic relationship between lexical units, and beneficial when applied to language learning, information processing, translation, and so forth. In the face of a novel disease, like, COVID‐19, establishing medical‐specific corpus will enhance frontline medical personnel's information acquisition efficiency, guiding them on the right approaches to respond to and prevent the novel disease. To effectively retrieve critical messages from the corpus, appropriately handling word‐ranking issues is quite crucial. However, traditional frequency‐based approaches may cause bias in handling word‐ranking issues because they neither optimize the corpus nor integrally take words' frequency dispersion and concentration criteria into consideration. Thus, this paper develops a novel corpus‐based approach that combines a corpus software and Hirsch index (H‐index) algorithm to handle the aforementioned issues simultaneously, making word‐ranking processes more accurate. This paper compiled 100 COVID‐19‐related research articles as an empirical example of the target corpus. To verify the proposed approach, this study compared the results of two traditional frequency‐based approaches and the proposed approach. The results indicate that the proposed approach can refine corpus and simultaneously compute words' frequency dispersion and concentration criteria in handling word‐ranking issues. |
doi_str_mv | 10.1002/int.22413 |
format | article |
fullrecord | <record><control><sourceid>proquest_COVID</sourceid><recordid>TN_cdi_proquest_journals_2500249692</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3038438278</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4713-63f9a8315710a5093b3e9fe411a329442c13cef45f71fdd9ce3c016e1e72cdd23</originalsourceid><addsrcrecordid>eNp9kU9u1DAUhy0EokNhwQWQJTawSOsXO2OHBdJo-DdSRTcFsbM8zkvHxYmDnbR01yNwBM7CUTgJHqZUgAQry8-fP72ffoQ8BHYAjJWHrh8PylIAv0VmwGpVAMCH22TGlBKFAsn3yL2UzhgDkKK6S_a4mjOphJiRqwXtwzl6akMcpvT96svaJGzytRum0fWntMNxExrahkg3pm_8dmajG501nl6E2OQ_0fQft3OX0oTpGV30377iZ9MNHmlo6fL4_epFxqCmEROaaDfUxGzwmO6TO63xCR9cn_vk3auXJ8s3xdHx69VycVRYIYEXc97WRnGoJDBTsZqvOdYtCgDDy1qI0gK32IqqldA2TW2RWwZzBJSlbZqS75PnO-8wrTtsLPZjNF4P0XUmXupgnP7zpXcbfRrOtSqZZHOZBU-uBTF8yilH3blk0XvTY5iS5owrwVUpVUYf_4WehSn2OZ4uK85BSYDq_1SuVdTzerv30x1lY0gpYnuzMjC9bV_n9vXP9jP76PeMN-SvujNwuAMunMfLf5v06u3JTvkDAfO9ig</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2500249692</pqid></control><display><type>article</type><title>A novel corpus‐based computing method for handling critical word‐ranking issues: An example of COVID‐19 research articles</title><source>Coronavirus Research Database</source><creator>Chen, Liang‐Ching ; Chang, Kuei‐Hu</creator><creatorcontrib>Chen, Liang‐Ching ; Chang, Kuei‐Hu</creatorcontrib><description>A corpus is a massive body of structured textual data that are stored and operated electronically. It usually combines with statistics, machine learning algorithms, or artificial intelligence (AI) technologies to explore the semantic relationship between lexical units, and beneficial when applied to language learning, information processing, translation, and so forth. In the face of a novel disease, like, COVID‐19, establishing medical‐specific corpus will enhance frontline medical personnel's information acquisition efficiency, guiding them on the right approaches to respond to and prevent the novel disease. To effectively retrieve critical messages from the corpus, appropriately handling word‐ranking issues is quite crucial. However, traditional frequency‐based approaches may cause bias in handling word‐ranking issues because they neither optimize the corpus nor integrally take words' frequency dispersion and concentration criteria into consideration. Thus, this paper develops a novel corpus‐based approach that combines a corpus software and Hirsch index (H‐index) algorithm to handle the aforementioned issues simultaneously, making word‐ranking processes more accurate. This paper compiled 100 COVID‐19‐related research articles as an empirical example of the target corpus. To verify the proposed approach, this study compared the results of two traditional frequency‐based approaches and the proposed approach. The results indicate that the proposed approach can refine corpus and simultaneously compute words' frequency dispersion and concentration criteria in handling word‐ranking issues.</description><identifier>ISSN: 0884-8173</identifier><identifier>ISSN: 1098-111X</identifier><identifier>EISSN: 1098-111X</identifier><identifier>DOI: 10.1002/int.22413</identifier><identifier>PMID: 38607844</identifier><language>eng</language><publisher>United States: John Wiley & Sons, Inc</publisher><subject>Algorithms ; Artificial intelligence ; corpus ; COVID-19 ; Criteria ; Data processing ; Dispersion ; Handling ; Hirsch index ; H‐index algorithm ; Intelligent systems ; Machine learning ; Medical personnel ; Ranking ; Words (language)</subject><ispartof>International Journal of Intelligent Systems, 2021-07, Vol.36 (7), p.3190-3216</ispartof><rights>2021 Wiley Periodicals LLC</rights><rights>2021 Wiley Periodicals LLC.</rights><rights>2021. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at https://novel-coronavirus.onlinelibrary.wiley.com</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4713-63f9a8315710a5093b3e9fe411a329442c13cef45f71fdd9ce3c016e1e72cdd23</citedby><cites>FETCH-LOGICAL-c4713-63f9a8315710a5093b3e9fe411a329442c13cef45f71fdd9ce3c016e1e72cdd23</cites><orcidid>0000-0002-7896-1990 ; 0000-0002-9630-7386</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2500249692?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>780,784,885,27925,38516,43895</link.rule.ids><linktorsrc>$$Uhttps://www.proquest.com/docview/2500249692?pq-origsite=primo$$EView_record_in_ProQuest$$FView_record_in_$$GProQuest</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38607844$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Liang‐Ching</creatorcontrib><creatorcontrib>Chang, Kuei‐Hu</creatorcontrib><title>A novel corpus‐based computing method for handling critical word‐ranking issues: An example of COVID‐19 research articles</title><title>International Journal of Intelligent Systems</title><addtitle>Int J Intell Syst</addtitle><description>A corpus is a massive body of structured textual data that are stored and operated electronically. It usually combines with statistics, machine learning algorithms, or artificial intelligence (AI) technologies to explore the semantic relationship between lexical units, and beneficial when applied to language learning, information processing, translation, and so forth. In the face of a novel disease, like, COVID‐19, establishing medical‐specific corpus will enhance frontline medical personnel's information acquisition efficiency, guiding them on the right approaches to respond to and prevent the novel disease. To effectively retrieve critical messages from the corpus, appropriately handling word‐ranking issues is quite crucial. However, traditional frequency‐based approaches may cause bias in handling word‐ranking issues because they neither optimize the corpus nor integrally take words' frequency dispersion and concentration criteria into consideration. Thus, this paper develops a novel corpus‐based approach that combines a corpus software and Hirsch index (H‐index) algorithm to handle the aforementioned issues simultaneously, making word‐ranking processes more accurate. This paper compiled 100 COVID‐19‐related research articles as an empirical example of the target corpus. To verify the proposed approach, this study compared the results of two traditional frequency‐based approaches and the proposed approach. The results indicate that the proposed approach can refine corpus and simultaneously compute words' frequency dispersion and concentration criteria in handling word‐ranking issues.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>corpus</subject><subject>COVID-19</subject><subject>Criteria</subject><subject>Data processing</subject><subject>Dispersion</subject><subject>Handling</subject><subject>Hirsch index</subject><subject>H‐index algorithm</subject><subject>Intelligent systems</subject><subject>Machine learning</subject><subject>Medical personnel</subject><subject>Ranking</subject><subject>Words (language)</subject><issn>0884-8173</issn><issn>1098-111X</issn><issn>1098-111X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><recordid>eNp9kU9u1DAUhy0EokNhwQWQJTawSOsXO2OHBdJo-DdSRTcFsbM8zkvHxYmDnbR01yNwBM7CUTgJHqZUgAQry8-fP72ffoQ8BHYAjJWHrh8PylIAv0VmwGpVAMCH22TGlBKFAsn3yL2UzhgDkKK6S_a4mjOphJiRqwXtwzl6akMcpvT96svaJGzytRum0fWntMNxExrahkg3pm_8dmajG501nl6E2OQ_0fQft3OX0oTpGV30377iZ9MNHmlo6fL4_epFxqCmEROaaDfUxGzwmO6TO63xCR9cn_vk3auXJ8s3xdHx69VycVRYIYEXc97WRnGoJDBTsZqvOdYtCgDDy1qI0gK32IqqldA2TW2RWwZzBJSlbZqS75PnO-8wrTtsLPZjNF4P0XUmXupgnP7zpXcbfRrOtSqZZHOZBU-uBTF8yilH3blk0XvTY5iS5owrwVUpVUYf_4WehSn2OZ4uK85BSYDq_1SuVdTzerv30x1lY0gpYnuzMjC9bV_n9vXP9jP76PeMN-SvujNwuAMunMfLf5v06u3JTvkDAfO9ig</recordid><startdate>202107</startdate><enddate>202107</enddate><creator>Chen, Liang‐Ching</creator><creator>Chang, Kuei‐Hu</creator><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><general>John Wiley and Sons Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>COVID</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7896-1990</orcidid><orcidid>https://orcid.org/0000-0002-9630-7386</orcidid></search><sort><creationdate>202107</creationdate><title>A novel corpus‐based computing method for handling critical word‐ranking issues: An example of COVID‐19 research articles</title><author>Chen, Liang‐Ching ; Chang, Kuei‐Hu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4713-63f9a8315710a5093b3e9fe411a329442c13cef45f71fdd9ce3c016e1e72cdd23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>corpus</topic><topic>COVID-19</topic><topic>Criteria</topic><topic>Data processing</topic><topic>Dispersion</topic><topic>Handling</topic><topic>Hirsch index</topic><topic>H‐index algorithm</topic><topic>Intelligent systems</topic><topic>Machine learning</topic><topic>Medical personnel</topic><topic>Ranking</topic><topic>Words (language)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Liang‐Ching</creatorcontrib><creatorcontrib>Chang, Kuei‐Hu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Coronavirus Research Database</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International Journal of Intelligent Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Liang‐Ching</au><au>Chang, Kuei‐Hu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel corpus‐based computing method for handling critical word‐ranking issues: An example of COVID‐19 research articles</atitle><jtitle>International Journal of Intelligent Systems</jtitle><addtitle>Int J Intell Syst</addtitle><date>2021-07</date><risdate>2021</risdate><volume>36</volume><issue>7</issue><spage>3190</spage><epage>3216</epage><pages>3190-3216</pages><issn>0884-8173</issn><issn>1098-111X</issn><eissn>1098-111X</eissn><abstract>A corpus is a massive body of structured textual data that are stored and operated electronically. It usually combines with statistics, machine learning algorithms, or artificial intelligence (AI) technologies to explore the semantic relationship between lexical units, and beneficial when applied to language learning, information processing, translation, and so forth. In the face of a novel disease, like, COVID‐19, establishing medical‐specific corpus will enhance frontline medical personnel's information acquisition efficiency, guiding them on the right approaches to respond to and prevent the novel disease. To effectively retrieve critical messages from the corpus, appropriately handling word‐ranking issues is quite crucial. However, traditional frequency‐based approaches may cause bias in handling word‐ranking issues because they neither optimize the corpus nor integrally take words' frequency dispersion and concentration criteria into consideration. Thus, this paper develops a novel corpus‐based approach that combines a corpus software and Hirsch index (H‐index) algorithm to handle the aforementioned issues simultaneously, making word‐ranking processes more accurate. This paper compiled 100 COVID‐19‐related research articles as an empirical example of the target corpus. To verify the proposed approach, this study compared the results of two traditional frequency‐based approaches and the proposed approach. The results indicate that the proposed approach can refine corpus and simultaneously compute words' frequency dispersion and concentration criteria in handling word‐ranking issues.</abstract><cop>United States</cop><pub>John Wiley & Sons, Inc</pub><pmid>38607844</pmid><doi>10.1002/int.22413</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0002-7896-1990</orcidid><orcidid>https://orcid.org/0000-0002-9630-7386</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0884-8173 |
ispartof | International Journal of Intelligent Systems, 2021-07, Vol.36 (7), p.3190-3216 |
issn | 0884-8173 1098-111X 1098-111X |
language | eng |
recordid | cdi_proquest_journals_2500249692 |
source | Coronavirus Research Database |
subjects | Algorithms Artificial intelligence corpus COVID-19 Criteria Data processing Dispersion Handling Hirsch index H‐index algorithm Intelligent systems Machine learning Medical personnel Ranking Words (language) |
title | A novel corpus‐based computing method for handling critical word‐ranking issues: An example of COVID‐19 research articles |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A15%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_COVID&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20corpus%E2%80%90based%20computing%20method%20for%20handling%20critical%20word%E2%80%90ranking%20issues:%20An%C2%A0example%20of%20COVID%E2%80%9019%20research%20articles&rft.jtitle=International%20Journal%20of%20Intelligent%20Systems&rft.au=Chen,%20Liang%E2%80%90Ching&rft.date=2021-07&rft.volume=36&rft.issue=7&rft.spage=3190&rft.epage=3216&rft.pages=3190-3216&rft.issn=0884-8173&rft.eissn=1098-111X&rft_id=info:doi/10.1002/int.22413&rft_dat=%3Cproquest_COVID%3E3038438278%3C/proquest_COVID%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4713-63f9a8315710a5093b3e9fe411a329442c13cef45f71fdd9ce3c016e1e72cdd23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2500249692&rft_id=info:pmid/38607844&rfr_iscdi=true |