Loading…

Performance prediction of parallel applications: a systematic literature review

Different techniques for estimating the execution time of parallel applications have been studied for the last 25 years. These approaches have proposed different methods for predicting the performance behaviour of applications. Most of these methods rely on analysing one or more of the following asp...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of supercomputing 2021-04, Vol.77 (4), p.4014-4055
Main Authors: Flores-Contreras, Jesus, Duran-Limon, Hector A., Chavoya, Arturo, Almanza-Ruiz, Sergio H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c372t-d9eaf0570dac59e5c63c92890d95952ec2d24303e99ae32a592141644f0e511e3
cites cdi_FETCH-LOGICAL-c372t-d9eaf0570dac59e5c63c92890d95952ec2d24303e99ae32a592141644f0e511e3
container_end_page 4055
container_issue 4
container_start_page 4014
container_title The Journal of supercomputing
container_volume 77
creator Flores-Contreras, Jesus
Duran-Limon, Hector A.
Chavoya, Arturo
Almanza-Ruiz, Sergio H.
description Different techniques for estimating the execution time of parallel applications have been studied for the last 25 years. These approaches have proposed different methods for predicting the performance behaviour of applications. Most of these methods rely on analysing one or more of the following aspects: system workload, application structure, platform system, and the computing resources that the application needs to perform its operations. These elements are used and applied by different methods such as analytic and non-analytic methods. However, no wide-ranging survey of these approaches exists at the time of writing. This paper presents a systematic review of performance prediction methods for parallel applications, which were published in the open literature during the period 2005–2020. We define a classification framework to categorise the reviewed approaches. In addition, we identify some directions and trends in performance prediction as well as some unsolved issues.
doi_str_mv 10.1007/s11227-020-03417-5
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2500466704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2500466704</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-d9eaf0570dac59e5c63c92890d95952ec2d24303e99ae32a592141644f0e511e3</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFb_gKcFz9HZr2zXmxS_oFAPel6WzURS0iTOpkr_vVsjePM0zMz7zvA-jF0KuBYA9iYJIaUtQEIBSgtbmCM2E8aqAvRCH7MZuLxaGC1P2VlKGwDQyqoZW78g1T1tQxeRD4RVE8em73hf8yFQaFtseRiGtonhME-3PPC0TyNucx9524xIYdwRcsLPBr_O2Ukd2oQXv3XO3h7uX5dPxWr9-Ly8WxVRWTkWlcNQg7FQhWgcmliq6OTCQeWMMxKjrKRWoNC5gEoG46TQotS6BjRCoJqzq-nuQP3HDtPoN_2OuvzSS5PDlaXNCedMTqpIfUqEtR-o2QbaewH-AM5P4HwG53_AeZNNajKlLO7ekf5O_-P6BhwVcLk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2500466704</pqid></control><display><type>article</type><title>Performance prediction of parallel applications: a systematic literature review</title><source>Springer Nature</source><creator>Flores-Contreras, Jesus ; Duran-Limon, Hector A. ; Chavoya, Arturo ; Almanza-Ruiz, Sergio H.</creator><creatorcontrib>Flores-Contreras, Jesus ; Duran-Limon, Hector A. ; Chavoya, Arturo ; Almanza-Ruiz, Sergio H.</creatorcontrib><description>Different techniques for estimating the execution time of parallel applications have been studied for the last 25 years. These approaches have proposed different methods for predicting the performance behaviour of applications. Most of these methods rely on analysing one or more of the following aspects: system workload, application structure, platform system, and the computing resources that the application needs to perform its operations. These elements are used and applied by different methods such as analytic and non-analytic methods. However, no wide-ranging survey of these approaches exists at the time of writing. This paper presents a systematic review of performance prediction methods for parallel applications, which were published in the open literature during the period 2005–2020. We define a classification framework to categorise the reviewed approaches. In addition, we identify some directions and trends in performance prediction as well as some unsolved issues.</description><identifier>ISSN: 0920-8542</identifier><identifier>EISSN: 1573-0484</identifier><identifier>DOI: 10.1007/s11227-020-03417-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Compilers ; Computer Science ; Interpreters ; Literature reviews ; Performance prediction ; Processor Architectures ; Programming Languages</subject><ispartof>The Journal of supercomputing, 2021-04, Vol.77 (4), p.4014-4055</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-d9eaf0570dac59e5c63c92890d95952ec2d24303e99ae32a592141644f0e511e3</citedby><cites>FETCH-LOGICAL-c372t-d9eaf0570dac59e5c63c92890d95952ec2d24303e99ae32a592141644f0e511e3</cites><orcidid>0000-0002-2069-4711</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Flores-Contreras, Jesus</creatorcontrib><creatorcontrib>Duran-Limon, Hector A.</creatorcontrib><creatorcontrib>Chavoya, Arturo</creatorcontrib><creatorcontrib>Almanza-Ruiz, Sergio H.</creatorcontrib><title>Performance prediction of parallel applications: a systematic literature review</title><title>The Journal of supercomputing</title><addtitle>J Supercomput</addtitle><description>Different techniques for estimating the execution time of parallel applications have been studied for the last 25 years. These approaches have proposed different methods for predicting the performance behaviour of applications. Most of these methods rely on analysing one or more of the following aspects: system workload, application structure, platform system, and the computing resources that the application needs to perform its operations. These elements are used and applied by different methods such as analytic and non-analytic methods. However, no wide-ranging survey of these approaches exists at the time of writing. This paper presents a systematic review of performance prediction methods for parallel applications, which were published in the open literature during the period 2005–2020. We define a classification framework to categorise the reviewed approaches. In addition, we identify some directions and trends in performance prediction as well as some unsolved issues.</description><subject>Compilers</subject><subject>Computer Science</subject><subject>Interpreters</subject><subject>Literature reviews</subject><subject>Performance prediction</subject><subject>Processor Architectures</subject><subject>Programming Languages</subject><issn>0920-8542</issn><issn>1573-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRsFb_gKcFz9HZr2zXmxS_oFAPel6WzURS0iTOpkr_vVsjePM0zMz7zvA-jF0KuBYA9iYJIaUtQEIBSgtbmCM2E8aqAvRCH7MZuLxaGC1P2VlKGwDQyqoZW78g1T1tQxeRD4RVE8em73hf8yFQaFtseRiGtonhME-3PPC0TyNucx9524xIYdwRcsLPBr_O2Ukd2oQXv3XO3h7uX5dPxWr9-Ly8WxVRWTkWlcNQg7FQhWgcmliq6OTCQeWMMxKjrKRWoNC5gEoG46TQotS6BjRCoJqzq-nuQP3HDtPoN_2OuvzSS5PDlaXNCedMTqpIfUqEtR-o2QbaewH-AM5P4HwG53_AeZNNajKlLO7ekf5O_-P6BhwVcLk</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Flores-Contreras, Jesus</creator><creator>Duran-Limon, Hector A.</creator><creator>Chavoya, Arturo</creator><creator>Almanza-Ruiz, Sergio H.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2069-4711</orcidid></search><sort><creationdate>20210401</creationdate><title>Performance prediction of parallel applications: a systematic literature review</title><author>Flores-Contreras, Jesus ; Duran-Limon, Hector A. ; Chavoya, Arturo ; Almanza-Ruiz, Sergio H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-d9eaf0570dac59e5c63c92890d95952ec2d24303e99ae32a592141644f0e511e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Compilers</topic><topic>Computer Science</topic><topic>Interpreters</topic><topic>Literature reviews</topic><topic>Performance prediction</topic><topic>Processor Architectures</topic><topic>Programming Languages</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Flores-Contreras, Jesus</creatorcontrib><creatorcontrib>Duran-Limon, Hector A.</creatorcontrib><creatorcontrib>Chavoya, Arturo</creatorcontrib><creatorcontrib>Almanza-Ruiz, Sergio H.</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of supercomputing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Flores-Contreras, Jesus</au><au>Duran-Limon, Hector A.</au><au>Chavoya, Arturo</au><au>Almanza-Ruiz, Sergio H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance prediction of parallel applications: a systematic literature review</atitle><jtitle>The Journal of supercomputing</jtitle><stitle>J Supercomput</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>77</volume><issue>4</issue><spage>4014</spage><epage>4055</epage><pages>4014-4055</pages><issn>0920-8542</issn><eissn>1573-0484</eissn><abstract>Different techniques for estimating the execution time of parallel applications have been studied for the last 25 years. These approaches have proposed different methods for predicting the performance behaviour of applications. Most of these methods rely on analysing one or more of the following aspects: system workload, application structure, platform system, and the computing resources that the application needs to perform its operations. These elements are used and applied by different methods such as analytic and non-analytic methods. However, no wide-ranging survey of these approaches exists at the time of writing. This paper presents a systematic review of performance prediction methods for parallel applications, which were published in the open literature during the period 2005–2020. We define a classification framework to categorise the reviewed approaches. In addition, we identify some directions and trends in performance prediction as well as some unsolved issues.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11227-020-03417-5</doi><tpages>42</tpages><orcidid>https://orcid.org/0000-0002-2069-4711</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0920-8542
ispartof The Journal of supercomputing, 2021-04, Vol.77 (4), p.4014-4055
issn 0920-8542
1573-0484
language eng
recordid cdi_proquest_journals_2500466704
source Springer Nature
subjects Compilers
Computer Science
Interpreters
Literature reviews
Performance prediction
Processor Architectures
Programming Languages
title Performance prediction of parallel applications: a systematic literature review
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T15%3A19%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20prediction%20of%20parallel%20applications:%20a%20systematic%20literature%20review&rft.jtitle=The%20Journal%20of%20supercomputing&rft.au=Flores-Contreras,%20Jesus&rft.date=2021-04-01&rft.volume=77&rft.issue=4&rft.spage=4014&rft.epage=4055&rft.pages=4014-4055&rft.issn=0920-8542&rft.eissn=1573-0484&rft_id=info:doi/10.1007/s11227-020-03417-5&rft_dat=%3Cproquest_cross%3E2500466704%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c372t-d9eaf0570dac59e5c63c92890d95952ec2d24303e99ae32a592141644f0e511e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2500466704&rft_id=info:pmid/&rfr_iscdi=true