Loading…
Lower bounds for dilation, wirelength, and edge congestion of embedding graphs into hypercubes
Interconnection networks provide an effective mechanism for exchanging data between processors in a parallel computing system. One of the most efficient interconnection networks is the hypercube due to its structural regularity, potential for parallel computation of various algorithms, and the high...
Saved in:
Published in: | The Journal of supercomputing 2021-04, Vol.77 (4), p.4135-4150 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-107514fcced1553313662843c43e5e7059fe3651e3d4d1380bc403c585dc93253 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-107514fcced1553313662843c43e5e7059fe3651e3d4d1380bc403c585dc93253 |
container_end_page | 4150 |
container_issue | 4 |
container_start_page | 4135 |
container_title | The Journal of supercomputing |
container_volume | 77 |
creator | Sundara Rajan, R. Kalinowski, Thomas Klavžar, Sandi Mokhtar, Hamid Rajalaxmi, T. M. |
description | Interconnection networks provide an effective mechanism for exchanging data between processors in a parallel computing system. One of the most efficient interconnection networks is the hypercube due to its structural regularity, potential for parallel computation of various algorithms, and the high degree of fault tolerance. Thus it becomes the first choice of topological structure of parallel processing and computing systems. In this paper, lower bounds for the dilation, wirelength, and edge congestion of an embedding of a graph into a hypercube are proved. Two of these bounds are expressed in terms of the bisection width. Applying these results, the dilation and wirelength of embedding of certain complete multipartite graphs, folded hypercubes, wheels, and specific Cartesian products are computed. |
doi_str_mv | 10.1007/s11227-020-03420-w |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2500468447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2500468447</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-107514fcced1553313662843c43e5e7059fe3651e3d4d1380bc403c585dc93253</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Br1tNMkk_jrL4BQte9Gpok2m3y25Tk5bivzdrBW9eZmB43pl5X0KuObvljGV3gXMhsoQJljCQsU4nZMFVBgmTuTwlC1bEYa6kOCcXIewYYxIyWJCPjZvQ08qNnQ20dp7adl8OretWdGo97rFrhu2Klp2laBukxnUNhiNAXU3xUKG1bdfQxpf9NtC2GxzdfvXozVhhuCRndbkPePXbl-T98eFt_ZxsXp9e1vebxAAvhoSzTHFZG4OWKwXAIU1FLsFIQIUZU0WNkCqOYKXlkLPKSAZG5cqaAoSCJbmZ9_befY7xP71zo-_iSS1U9JrmUmaREjNlvAvBY6173x5K_6U508cc9Zyjjjnqnxz1FEUwi0KEo3f_t_of1TcRM3WT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2500468447</pqid></control><display><type>article</type><title>Lower bounds for dilation, wirelength, and edge congestion of embedding graphs into hypercubes</title><source>Springer Nature</source><creator>Sundara Rajan, R. ; Kalinowski, Thomas ; Klavžar, Sandi ; Mokhtar, Hamid ; Rajalaxmi, T. M.</creator><creatorcontrib>Sundara Rajan, R. ; Kalinowski, Thomas ; Klavžar, Sandi ; Mokhtar, Hamid ; Rajalaxmi, T. M.</creatorcontrib><description>Interconnection networks provide an effective mechanism for exchanging data between processors in a parallel computing system. One of the most efficient interconnection networks is the hypercube due to its structural regularity, potential for parallel computation of various algorithms, and the high degree of fault tolerance. Thus it becomes the first choice of topological structure of parallel processing and computing systems. In this paper, lower bounds for the dilation, wirelength, and edge congestion of an embedding of a graph into a hypercube are proved. Two of these bounds are expressed in terms of the bisection width. Applying these results, the dilation and wirelength of embedding of certain complete multipartite graphs, folded hypercubes, wheels, and specific Cartesian products are computed.</description><identifier>ISSN: 0920-8542</identifier><identifier>EISSN: 1573-0484</identifier><identifier>DOI: 10.1007/s11227-020-03420-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Cartesian coordinates ; Compilers ; Computer Science ; Congestion ; Dilation ; Embedding ; Fault tolerance ; Graphs ; Hypercubes ; Interpreters ; Lower bounds ; Parallel processing ; Processor Architectures ; Programming Languages</subject><ispartof>The Journal of supercomputing, 2021-04, Vol.77 (4), p.4135-4150</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-107514fcced1553313662843c43e5e7059fe3651e3d4d1380bc403c585dc93253</citedby><cites>FETCH-LOGICAL-c319t-107514fcced1553313662843c43e5e7059fe3651e3d4d1380bc403c585dc93253</cites><orcidid>0000-0002-1851-6334</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sundara Rajan, R.</creatorcontrib><creatorcontrib>Kalinowski, Thomas</creatorcontrib><creatorcontrib>Klavžar, Sandi</creatorcontrib><creatorcontrib>Mokhtar, Hamid</creatorcontrib><creatorcontrib>Rajalaxmi, T. M.</creatorcontrib><title>Lower bounds for dilation, wirelength, and edge congestion of embedding graphs into hypercubes</title><title>The Journal of supercomputing</title><addtitle>J Supercomput</addtitle><description>Interconnection networks provide an effective mechanism for exchanging data between processors in a parallel computing system. One of the most efficient interconnection networks is the hypercube due to its structural regularity, potential for parallel computation of various algorithms, and the high degree of fault tolerance. Thus it becomes the first choice of topological structure of parallel processing and computing systems. In this paper, lower bounds for the dilation, wirelength, and edge congestion of an embedding of a graph into a hypercube are proved. Two of these bounds are expressed in terms of the bisection width. Applying these results, the dilation and wirelength of embedding of certain complete multipartite graphs, folded hypercubes, wheels, and specific Cartesian products are computed.</description><subject>Algorithms</subject><subject>Cartesian coordinates</subject><subject>Compilers</subject><subject>Computer Science</subject><subject>Congestion</subject><subject>Dilation</subject><subject>Embedding</subject><subject>Fault tolerance</subject><subject>Graphs</subject><subject>Hypercubes</subject><subject>Interpreters</subject><subject>Lower bounds</subject><subject>Parallel processing</subject><subject>Processor Architectures</subject><subject>Programming Languages</subject><issn>0920-8542</issn><issn>1573-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU8Br1tNMkk_jrL4BQte9Gpok2m3y25Tk5bivzdrBW9eZmB43pl5X0KuObvljGV3gXMhsoQJljCQsU4nZMFVBgmTuTwlC1bEYa6kOCcXIewYYxIyWJCPjZvQ08qNnQ20dp7adl8OretWdGo97rFrhu2Klp2laBukxnUNhiNAXU3xUKG1bdfQxpf9NtC2GxzdfvXozVhhuCRndbkPePXbl-T98eFt_ZxsXp9e1vebxAAvhoSzTHFZG4OWKwXAIU1FLsFIQIUZU0WNkCqOYKXlkLPKSAZG5cqaAoSCJbmZ9_befY7xP71zo-_iSS1U9JrmUmaREjNlvAvBY6173x5K_6U508cc9Zyjjjnqnxz1FEUwi0KEo3f_t_of1TcRM3WT</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Sundara Rajan, R.</creator><creator>Kalinowski, Thomas</creator><creator>Klavžar, Sandi</creator><creator>Mokhtar, Hamid</creator><creator>Rajalaxmi, T. M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1851-6334</orcidid></search><sort><creationdate>20210401</creationdate><title>Lower bounds for dilation, wirelength, and edge congestion of embedding graphs into hypercubes</title><author>Sundara Rajan, R. ; Kalinowski, Thomas ; Klavžar, Sandi ; Mokhtar, Hamid ; Rajalaxmi, T. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-107514fcced1553313662843c43e5e7059fe3651e3d4d1380bc403c585dc93253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Cartesian coordinates</topic><topic>Compilers</topic><topic>Computer Science</topic><topic>Congestion</topic><topic>Dilation</topic><topic>Embedding</topic><topic>Fault tolerance</topic><topic>Graphs</topic><topic>Hypercubes</topic><topic>Interpreters</topic><topic>Lower bounds</topic><topic>Parallel processing</topic><topic>Processor Architectures</topic><topic>Programming Languages</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sundara Rajan, R.</creatorcontrib><creatorcontrib>Kalinowski, Thomas</creatorcontrib><creatorcontrib>Klavžar, Sandi</creatorcontrib><creatorcontrib>Mokhtar, Hamid</creatorcontrib><creatorcontrib>Rajalaxmi, T. M.</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of supercomputing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sundara Rajan, R.</au><au>Kalinowski, Thomas</au><au>Klavžar, Sandi</au><au>Mokhtar, Hamid</au><au>Rajalaxmi, T. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lower bounds for dilation, wirelength, and edge congestion of embedding graphs into hypercubes</atitle><jtitle>The Journal of supercomputing</jtitle><stitle>J Supercomput</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>77</volume><issue>4</issue><spage>4135</spage><epage>4150</epage><pages>4135-4150</pages><issn>0920-8542</issn><eissn>1573-0484</eissn><abstract>Interconnection networks provide an effective mechanism for exchanging data between processors in a parallel computing system. One of the most efficient interconnection networks is the hypercube due to its structural regularity, potential for parallel computation of various algorithms, and the high degree of fault tolerance. Thus it becomes the first choice of topological structure of parallel processing and computing systems. In this paper, lower bounds for the dilation, wirelength, and edge congestion of an embedding of a graph into a hypercube are proved. Two of these bounds are expressed in terms of the bisection width. Applying these results, the dilation and wirelength of embedding of certain complete multipartite graphs, folded hypercubes, wheels, and specific Cartesian products are computed.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11227-020-03420-w</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-1851-6334</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0920-8542 |
ispartof | The Journal of supercomputing, 2021-04, Vol.77 (4), p.4135-4150 |
issn | 0920-8542 1573-0484 |
language | eng |
recordid | cdi_proquest_journals_2500468447 |
source | Springer Nature |
subjects | Algorithms Cartesian coordinates Compilers Computer Science Congestion Dilation Embedding Fault tolerance Graphs Hypercubes Interpreters Lower bounds Parallel processing Processor Architectures Programming Languages |
title | Lower bounds for dilation, wirelength, and edge congestion of embedding graphs into hypercubes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T01%3A57%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lower%20bounds%20for%20dilation,%20wirelength,%20and%20edge%20congestion%20of%20embedding%20graphs%20into%20hypercubes&rft.jtitle=The%20Journal%20of%20supercomputing&rft.au=Sundara%20Rajan,%20R.&rft.date=2021-04-01&rft.volume=77&rft.issue=4&rft.spage=4135&rft.epage=4150&rft.pages=4135-4150&rft.issn=0920-8542&rft.eissn=1573-0484&rft_id=info:doi/10.1007/s11227-020-03420-w&rft_dat=%3Cproquest_cross%3E2500468447%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-107514fcced1553313662843c43e5e7059fe3651e3d4d1380bc403c585dc93253%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2500468447&rft_id=info:pmid/&rfr_iscdi=true |