Loading…
Extended analytical formulae for the perturbed Keplerian motion under low-thrust acceleration and orbital perturbations
This paper presents a collection of analytical formulae that can be used in the long-term propagation of the motion of a spacecraft subject to low-thrust acceleration and orbital perturbations. The paper considers accelerations due to: a low-thrust profile following an inverse square law, gravity pe...
Saved in:
Published in: | Celestial mechanics and dynamical astronomy 2021-03, Vol.133 (3), Article 13 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c363t-aeadeadd622701764cb9155f1e017ab843d60e20378c135c8e5475f3bc874fb83 |
---|---|
cites | cdi_FETCH-LOGICAL-c363t-aeadeadd622701764cb9155f1e017ab843d60e20378c135c8e5475f3bc874fb83 |
container_end_page | |
container_issue | 3 |
container_start_page | |
container_title | Celestial mechanics and dynamical astronomy |
container_volume | 133 |
creator | Di Carlo, Marilena Graça Marto, Simão da Vasile, Massimiliano |
description | This paper presents a collection of analytical formulae that can be used in the long-term propagation of the motion of a spacecraft subject to low-thrust acceleration and orbital perturbations. The paper considers accelerations due to: a low-thrust profile following an inverse square law, gravity perturbations due to the central body gravity field and the third-body gravitational perturbation. The analytical formulae are expressed in terms of non-singular equinoctial elements. The formulae for the third-body gravitational perturbation have been obtained starting from equations for the third-body potential already available in the literature. However, the final analytical formulae for the variation of the equinoctial orbital elements are a novel derivation. The results are validated, for different orbital regimes, using high-precision numerical orbit propagators. |
doi_str_mv | 10.1007/s10569-021-10007-x |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2500686542</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2500686542</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-aeadeadd622701764cb9155f1e017ab843d60e20378c135c8e5475f3bc874fb83</originalsourceid><addsrcrecordid>eNp9kMtqwzAQRUVpoenjB7oSdK1WD8uSlyWkDxropl0LWR43Do7tSjJJ_r5KHOiuMDAzzLkX5iJ0x-gDo1Q9BkZlXhDKGUk7VWR3hmZMKk6KTOlzNKMFF4QXUl-iqxDWiZG0kDO0XewidBVU2Ha23cfG2RbXvd-MrYXDgOMK8AA-jr5M1DsMLfjGdnjTx6bv8JjEHrf9lsSVH0PE1jlIiD1ebVfh3pdNTK4nk-Mh3KCL2rYBbk_9Gn09Lz7nr2T58fI2f1oSJ3IRiQVbpapyzhVlKs9cWTApawZps6XORJVT4FQo7ZiQToPMlKxF6bTK6lKLa3Q_-Q6-_xkhRLPuR59eDYZLSnOdy4wnik-U830IHmoz-GZj_d4wag4BmylgkwI2x4DNLonEJAoJ7r7B_1n_o_oF4sKBhg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2500686542</pqid></control><display><type>article</type><title>Extended analytical formulae for the perturbed Keplerian motion under low-thrust acceleration and orbital perturbations</title><source>Springer Nature</source><creator>Di Carlo, Marilena ; Graça Marto, Simão da ; Vasile, Massimiliano</creator><creatorcontrib>Di Carlo, Marilena ; Graça Marto, Simão da ; Vasile, Massimiliano</creatorcontrib><description>This paper presents a collection of analytical formulae that can be used in the long-term propagation of the motion of a spacecraft subject to low-thrust acceleration and orbital perturbations. The paper considers accelerations due to: a low-thrust profile following an inverse square law, gravity perturbations due to the central body gravity field and the third-body gravitational perturbation. The analytical formulae are expressed in terms of non-singular equinoctial elements. The formulae for the third-body gravitational perturbation have been obtained starting from equations for the third-body potential already available in the literature. However, the final analytical formulae for the variation of the equinoctial orbital elements are a novel derivation. The results are validated, for different orbital regimes, using high-precision numerical orbit propagators.</description><identifier>ISSN: 0923-2958</identifier><identifier>EISSN: 1572-9478</identifier><identifier>DOI: 10.1007/s10569-021-10007-x</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Acceleration ; Aerospace Technology and Astronautics ; Astrophysics and Astroparticles ; Classical Mechanics ; Dynamical Systems and Ergodic Theory ; Geophysics/Geodesy ; Gravitational fields ; Kepler laws ; Mathematical analysis ; Orbit perturbation ; Orbital elements ; Original Article ; Physics ; Physics and Astronomy ; Solar orbits ; Spacecraft ; Thrust</subject><ispartof>Celestial mechanics and dynamical astronomy, 2021-03, Vol.133 (3), Article 13</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-aeadeadd622701764cb9155f1e017ab843d60e20378c135c8e5475f3bc874fb83</citedby><cites>FETCH-LOGICAL-c363t-aeadeadd622701764cb9155f1e017ab843d60e20378c135c8e5475f3bc874fb83</cites><orcidid>0000-0001-5046-3028</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Di Carlo, Marilena</creatorcontrib><creatorcontrib>Graça Marto, Simão da</creatorcontrib><creatorcontrib>Vasile, Massimiliano</creatorcontrib><title>Extended analytical formulae for the perturbed Keplerian motion under low-thrust acceleration and orbital perturbations</title><title>Celestial mechanics and dynamical astronomy</title><addtitle>Celest Mech Dyn Astr</addtitle><description>This paper presents a collection of analytical formulae that can be used in the long-term propagation of the motion of a spacecraft subject to low-thrust acceleration and orbital perturbations. The paper considers accelerations due to: a low-thrust profile following an inverse square law, gravity perturbations due to the central body gravity field and the third-body gravitational perturbation. The analytical formulae are expressed in terms of non-singular equinoctial elements. The formulae for the third-body gravitational perturbation have been obtained starting from equations for the third-body potential already available in the literature. However, the final analytical formulae for the variation of the equinoctial orbital elements are a novel derivation. The results are validated, for different orbital regimes, using high-precision numerical orbit propagators.</description><subject>Acceleration</subject><subject>Aerospace Technology and Astronautics</subject><subject>Astrophysics and Astroparticles</subject><subject>Classical Mechanics</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Geophysics/Geodesy</subject><subject>Gravitational fields</subject><subject>Kepler laws</subject><subject>Mathematical analysis</subject><subject>Orbit perturbation</subject><subject>Orbital elements</subject><subject>Original Article</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Solar orbits</subject><subject>Spacecraft</subject><subject>Thrust</subject><issn>0923-2958</issn><issn>1572-9478</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtqwzAQRUVpoenjB7oSdK1WD8uSlyWkDxropl0LWR43Do7tSjJJ_r5KHOiuMDAzzLkX5iJ0x-gDo1Q9BkZlXhDKGUk7VWR3hmZMKk6KTOlzNKMFF4QXUl-iqxDWiZG0kDO0XewidBVU2Ha23cfG2RbXvd-MrYXDgOMK8AA-jr5M1DsMLfjGdnjTx6bv8JjEHrf9lsSVH0PE1jlIiD1ebVfh3pdNTK4nk-Mh3KCL2rYBbk_9Gn09Lz7nr2T58fI2f1oSJ3IRiQVbpapyzhVlKs9cWTApawZps6XORJVT4FQo7ZiQToPMlKxF6bTK6lKLa3Q_-Q6-_xkhRLPuR59eDYZLSnOdy4wnik-U830IHmoz-GZj_d4wag4BmylgkwI2x4DNLonEJAoJ7r7B_1n_o_oF4sKBhg</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Di Carlo, Marilena</creator><creator>Graça Marto, Simão da</creator><creator>Vasile, Massimiliano</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-5046-3028</orcidid></search><sort><creationdate>20210301</creationdate><title>Extended analytical formulae for the perturbed Keplerian motion under low-thrust acceleration and orbital perturbations</title><author>Di Carlo, Marilena ; Graça Marto, Simão da ; Vasile, Massimiliano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-aeadeadd622701764cb9155f1e017ab843d60e20378c135c8e5475f3bc874fb83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acceleration</topic><topic>Aerospace Technology and Astronautics</topic><topic>Astrophysics and Astroparticles</topic><topic>Classical Mechanics</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Geophysics/Geodesy</topic><topic>Gravitational fields</topic><topic>Kepler laws</topic><topic>Mathematical analysis</topic><topic>Orbit perturbation</topic><topic>Orbital elements</topic><topic>Original Article</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Solar orbits</topic><topic>Spacecraft</topic><topic>Thrust</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Di Carlo, Marilena</creatorcontrib><creatorcontrib>Graça Marto, Simão da</creatorcontrib><creatorcontrib>Vasile, Massimiliano</creatorcontrib><collection>Springer_OA刊</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Science Journals</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Celestial mechanics and dynamical astronomy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Di Carlo, Marilena</au><au>Graça Marto, Simão da</au><au>Vasile, Massimiliano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extended analytical formulae for the perturbed Keplerian motion under low-thrust acceleration and orbital perturbations</atitle><jtitle>Celestial mechanics and dynamical astronomy</jtitle><stitle>Celest Mech Dyn Astr</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>133</volume><issue>3</issue><artnum>13</artnum><issn>0923-2958</issn><eissn>1572-9478</eissn><abstract>This paper presents a collection of analytical formulae that can be used in the long-term propagation of the motion of a spacecraft subject to low-thrust acceleration and orbital perturbations. The paper considers accelerations due to: a low-thrust profile following an inverse square law, gravity perturbations due to the central body gravity field and the third-body gravitational perturbation. The analytical formulae are expressed in terms of non-singular equinoctial elements. The formulae for the third-body gravitational perturbation have been obtained starting from equations for the third-body potential already available in the literature. However, the final analytical formulae for the variation of the equinoctial orbital elements are a novel derivation. The results are validated, for different orbital regimes, using high-precision numerical orbit propagators.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10569-021-10007-x</doi><orcidid>https://orcid.org/0000-0001-5046-3028</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0923-2958 |
ispartof | Celestial mechanics and dynamical astronomy, 2021-03, Vol.133 (3), Article 13 |
issn | 0923-2958 1572-9478 |
language | eng |
recordid | cdi_proquest_journals_2500686542 |
source | Springer Nature |
subjects | Acceleration Aerospace Technology and Astronautics Astrophysics and Astroparticles Classical Mechanics Dynamical Systems and Ergodic Theory Geophysics/Geodesy Gravitational fields Kepler laws Mathematical analysis Orbit perturbation Orbital elements Original Article Physics Physics and Astronomy Solar orbits Spacecraft Thrust |
title | Extended analytical formulae for the perturbed Keplerian motion under low-thrust acceleration and orbital perturbations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T02%3A55%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extended%20analytical%20formulae%20for%20the%20perturbed%20Keplerian%20motion%20under%20low-thrust%20acceleration%20and%20orbital%20perturbations&rft.jtitle=Celestial%20mechanics%20and%20dynamical%20astronomy&rft.au=Di%20Carlo,%20Marilena&rft.date=2021-03-01&rft.volume=133&rft.issue=3&rft.artnum=13&rft.issn=0923-2958&rft.eissn=1572-9478&rft_id=info:doi/10.1007/s10569-021-10007-x&rft_dat=%3Cproquest_cross%3E2500686542%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-aeadeadd622701764cb9155f1e017ab843d60e20378c135c8e5475f3bc874fb83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2500686542&rft_id=info:pmid/&rfr_iscdi=true |