Loading…

Extended analytical formulae for the perturbed Keplerian motion under low-thrust acceleration and orbital perturbations

This paper presents a collection of analytical formulae that can be used in the long-term propagation of the motion of a spacecraft subject to low-thrust acceleration and orbital perturbations. The paper considers accelerations due to: a low-thrust profile following an inverse square law, gravity pe...

Full description

Saved in:
Bibliographic Details
Published in:Celestial mechanics and dynamical astronomy 2021-03, Vol.133 (3), Article 13
Main Authors: Di Carlo, Marilena, Graça Marto, Simão da, Vasile, Massimiliano
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c363t-aeadeadd622701764cb9155f1e017ab843d60e20378c135c8e5475f3bc874fb83
cites cdi_FETCH-LOGICAL-c363t-aeadeadd622701764cb9155f1e017ab843d60e20378c135c8e5475f3bc874fb83
container_end_page
container_issue 3
container_start_page
container_title Celestial mechanics and dynamical astronomy
container_volume 133
creator Di Carlo, Marilena
Graça Marto, Simão da
Vasile, Massimiliano
description This paper presents a collection of analytical formulae that can be used in the long-term propagation of the motion of a spacecraft subject to low-thrust acceleration and orbital perturbations. The paper considers accelerations due to: a low-thrust profile following an inverse square law, gravity perturbations due to the central body gravity field and the third-body gravitational perturbation. The analytical formulae are expressed in terms of non-singular equinoctial elements. The formulae for the third-body gravitational perturbation have been obtained starting from equations for the third-body potential already available in the literature. However, the final analytical formulae for the variation of the equinoctial orbital elements are a novel derivation. The results are validated, for different orbital regimes, using high-precision numerical orbit propagators.
doi_str_mv 10.1007/s10569-021-10007-x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2500686542</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2500686542</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-aeadeadd622701764cb9155f1e017ab843d60e20378c135c8e5475f3bc874fb83</originalsourceid><addsrcrecordid>eNp9kMtqwzAQRUVpoenjB7oSdK1WD8uSlyWkDxropl0LWR43Do7tSjJJ_r5KHOiuMDAzzLkX5iJ0x-gDo1Q9BkZlXhDKGUk7VWR3hmZMKk6KTOlzNKMFF4QXUl-iqxDWiZG0kDO0XewidBVU2Ha23cfG2RbXvd-MrYXDgOMK8AA-jr5M1DsMLfjGdnjTx6bv8JjEHrf9lsSVH0PE1jlIiD1ebVfh3pdNTK4nk-Mh3KCL2rYBbk_9Gn09Lz7nr2T58fI2f1oSJ3IRiQVbpapyzhVlKs9cWTApawZps6XORJVT4FQo7ZiQToPMlKxF6bTK6lKLa3Q_-Q6-_xkhRLPuR59eDYZLSnOdy4wnik-U830IHmoz-GZj_d4wag4BmylgkwI2x4DNLonEJAoJ7r7B_1n_o_oF4sKBhg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2500686542</pqid></control><display><type>article</type><title>Extended analytical formulae for the perturbed Keplerian motion under low-thrust acceleration and orbital perturbations</title><source>Springer Nature</source><creator>Di Carlo, Marilena ; Graça Marto, Simão da ; Vasile, Massimiliano</creator><creatorcontrib>Di Carlo, Marilena ; Graça Marto, Simão da ; Vasile, Massimiliano</creatorcontrib><description>This paper presents a collection of analytical formulae that can be used in the long-term propagation of the motion of a spacecraft subject to low-thrust acceleration and orbital perturbations. The paper considers accelerations due to: a low-thrust profile following an inverse square law, gravity perturbations due to the central body gravity field and the third-body gravitational perturbation. The analytical formulae are expressed in terms of non-singular equinoctial elements. The formulae for the third-body gravitational perturbation have been obtained starting from equations for the third-body potential already available in the literature. However, the final analytical formulae for the variation of the equinoctial orbital elements are a novel derivation. The results are validated, for different orbital regimes, using high-precision numerical orbit propagators.</description><identifier>ISSN: 0923-2958</identifier><identifier>EISSN: 1572-9478</identifier><identifier>DOI: 10.1007/s10569-021-10007-x</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Acceleration ; Aerospace Technology and Astronautics ; Astrophysics and Astroparticles ; Classical Mechanics ; Dynamical Systems and Ergodic Theory ; Geophysics/Geodesy ; Gravitational fields ; Kepler laws ; Mathematical analysis ; Orbit perturbation ; Orbital elements ; Original Article ; Physics ; Physics and Astronomy ; Solar orbits ; Spacecraft ; Thrust</subject><ispartof>Celestial mechanics and dynamical astronomy, 2021-03, Vol.133 (3), Article 13</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-aeadeadd622701764cb9155f1e017ab843d60e20378c135c8e5475f3bc874fb83</citedby><cites>FETCH-LOGICAL-c363t-aeadeadd622701764cb9155f1e017ab843d60e20378c135c8e5475f3bc874fb83</cites><orcidid>0000-0001-5046-3028</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Di Carlo, Marilena</creatorcontrib><creatorcontrib>Graça Marto, Simão da</creatorcontrib><creatorcontrib>Vasile, Massimiliano</creatorcontrib><title>Extended analytical formulae for the perturbed Keplerian motion under low-thrust acceleration and orbital perturbations</title><title>Celestial mechanics and dynamical astronomy</title><addtitle>Celest Mech Dyn Astr</addtitle><description>This paper presents a collection of analytical formulae that can be used in the long-term propagation of the motion of a spacecraft subject to low-thrust acceleration and orbital perturbations. The paper considers accelerations due to: a low-thrust profile following an inverse square law, gravity perturbations due to the central body gravity field and the third-body gravitational perturbation. The analytical formulae are expressed in terms of non-singular equinoctial elements. The formulae for the third-body gravitational perturbation have been obtained starting from equations for the third-body potential already available in the literature. However, the final analytical formulae for the variation of the equinoctial orbital elements are a novel derivation. The results are validated, for different orbital regimes, using high-precision numerical orbit propagators.</description><subject>Acceleration</subject><subject>Aerospace Technology and Astronautics</subject><subject>Astrophysics and Astroparticles</subject><subject>Classical Mechanics</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Geophysics/Geodesy</subject><subject>Gravitational fields</subject><subject>Kepler laws</subject><subject>Mathematical analysis</subject><subject>Orbit perturbation</subject><subject>Orbital elements</subject><subject>Original Article</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Solar orbits</subject><subject>Spacecraft</subject><subject>Thrust</subject><issn>0923-2958</issn><issn>1572-9478</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtqwzAQRUVpoenjB7oSdK1WD8uSlyWkDxropl0LWR43Do7tSjJJ_r5KHOiuMDAzzLkX5iJ0x-gDo1Q9BkZlXhDKGUk7VWR3hmZMKk6KTOlzNKMFF4QXUl-iqxDWiZG0kDO0XewidBVU2Ha23cfG2RbXvd-MrYXDgOMK8AA-jr5M1DsMLfjGdnjTx6bv8JjEHrf9lsSVH0PE1jlIiD1ebVfh3pdNTK4nk-Mh3KCL2rYBbk_9Gn09Lz7nr2T58fI2f1oSJ3IRiQVbpapyzhVlKs9cWTApawZps6XORJVT4FQo7ZiQToPMlKxF6bTK6lKLa3Q_-Q6-_xkhRLPuR59eDYZLSnOdy4wnik-U830IHmoz-GZj_d4wag4BmylgkwI2x4DNLonEJAoJ7r7B_1n_o_oF4sKBhg</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Di Carlo, Marilena</creator><creator>Graça Marto, Simão da</creator><creator>Vasile, Massimiliano</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-5046-3028</orcidid></search><sort><creationdate>20210301</creationdate><title>Extended analytical formulae for the perturbed Keplerian motion under low-thrust acceleration and orbital perturbations</title><author>Di Carlo, Marilena ; Graça Marto, Simão da ; Vasile, Massimiliano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-aeadeadd622701764cb9155f1e017ab843d60e20378c135c8e5475f3bc874fb83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acceleration</topic><topic>Aerospace Technology and Astronautics</topic><topic>Astrophysics and Astroparticles</topic><topic>Classical Mechanics</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Geophysics/Geodesy</topic><topic>Gravitational fields</topic><topic>Kepler laws</topic><topic>Mathematical analysis</topic><topic>Orbit perturbation</topic><topic>Orbital elements</topic><topic>Original Article</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Solar orbits</topic><topic>Spacecraft</topic><topic>Thrust</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Di Carlo, Marilena</creatorcontrib><creatorcontrib>Graça Marto, Simão da</creatorcontrib><creatorcontrib>Vasile, Massimiliano</creatorcontrib><collection>Springer_OA刊</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Science Journals</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Celestial mechanics and dynamical astronomy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Di Carlo, Marilena</au><au>Graça Marto, Simão da</au><au>Vasile, Massimiliano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extended analytical formulae for the perturbed Keplerian motion under low-thrust acceleration and orbital perturbations</atitle><jtitle>Celestial mechanics and dynamical astronomy</jtitle><stitle>Celest Mech Dyn Astr</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>133</volume><issue>3</issue><artnum>13</artnum><issn>0923-2958</issn><eissn>1572-9478</eissn><abstract>This paper presents a collection of analytical formulae that can be used in the long-term propagation of the motion of a spacecraft subject to low-thrust acceleration and orbital perturbations. The paper considers accelerations due to: a low-thrust profile following an inverse square law, gravity perturbations due to the central body gravity field and the third-body gravitational perturbation. The analytical formulae are expressed in terms of non-singular equinoctial elements. The formulae for the third-body gravitational perturbation have been obtained starting from equations for the third-body potential already available in the literature. However, the final analytical formulae for the variation of the equinoctial orbital elements are a novel derivation. The results are validated, for different orbital regimes, using high-precision numerical orbit propagators.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10569-021-10007-x</doi><orcidid>https://orcid.org/0000-0001-5046-3028</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0923-2958
ispartof Celestial mechanics and dynamical astronomy, 2021-03, Vol.133 (3), Article 13
issn 0923-2958
1572-9478
language eng
recordid cdi_proquest_journals_2500686542
source Springer Nature
subjects Acceleration
Aerospace Technology and Astronautics
Astrophysics and Astroparticles
Classical Mechanics
Dynamical Systems and Ergodic Theory
Geophysics/Geodesy
Gravitational fields
Kepler laws
Mathematical analysis
Orbit perturbation
Orbital elements
Original Article
Physics
Physics and Astronomy
Solar orbits
Spacecraft
Thrust
title Extended analytical formulae for the perturbed Keplerian motion under low-thrust acceleration and orbital perturbations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T02%3A55%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extended%20analytical%20formulae%20for%20the%20perturbed%20Keplerian%20motion%20under%20low-thrust%20acceleration%20and%20orbital%20perturbations&rft.jtitle=Celestial%20mechanics%20and%20dynamical%20astronomy&rft.au=Di%20Carlo,%20Marilena&rft.date=2021-03-01&rft.volume=133&rft.issue=3&rft.artnum=13&rft.issn=0923-2958&rft.eissn=1572-9478&rft_id=info:doi/10.1007/s10569-021-10007-x&rft_dat=%3Cproquest_cross%3E2500686542%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-aeadeadd622701764cb9155f1e017ab843d60e20378c135c8e5475f3bc874fb83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2500686542&rft_id=info:pmid/&rfr_iscdi=true