Loading…
Hydrothermal liquefaction of cellulose and lignin: a new approach on the investigation of chemical reaction networks
Hydrothermal liquefaction is one of the most promising technologies to convert high moisture biomass into biofuels. However, understanding the liquefaction mechanism of different biomass fractions is still a challenge. The liquefaction of both lignin and cellulose is frequently studied, but the high...
Saved in:
Published in: | Cellulose (London) 2021-03, Vol.28 (4), p.2003-2020 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c356t-48bfc3680110b6e2c7186a8395d14a9d1198f0148ac17e1fe07d05cef7159e6c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c356t-48bfc3680110b6e2c7186a8395d14a9d1198f0148ac17e1fe07d05cef7159e6c3 |
container_end_page | 2020 |
container_issue | 4 |
container_start_page | 2003 |
container_title | Cellulose (London) |
container_volume | 28 |
creator | do Couto Fraga, Adriano de Almeida, Marlon Brando Bezerra Sousa-Aguiar, Eduardo Falabella |
description | Hydrothermal liquefaction is one of the most promising technologies to convert high moisture biomass into biofuels. However, understanding the liquefaction mechanism of different biomass fractions is still a challenge. The liquefaction of both lignin and cellulose is frequently studied, but the high diversity of biomass and processes used to generate these fractions makes the direct comparison difficult. In this work, one studies the liquefaction of lignin which has been generated in the process of lignocellulosic ethanol production employing acidic steam explosion. Results are compared with the liquefaction of commercial cellulose. The results have shown that this kind of lignin could produce higher amounts of bio-oil. Moreover, a model to quantify the contribution of the main kinds of reactions to the liquefaction mechanism was proposed. Dehydration was the main reaction observed for both raw materials, however decarboxylation plays a more relevant role in lignin liquefaction, accounting for near 37% of reactions in liquefaction pathway, whereas for cellulose it represents only 13% of reactions. |
doi_str_mv | 10.1007/s10570-020-03658-w |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2500686586</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2500686586</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-48bfc3680110b6e2c7186a8395d14a9d1198f0148ac17e1fe07d05cef7159e6c3</originalsourceid><addsrcrecordid>eNp9kL1OwzAURi0EEqXwAkyWmAPXSf0TNlQBRarEAhKb5To3bUpqFzsl6ttjSAUbg-Xhfufz9SHkksE1A5A3kQGXkEGeTiG4yvojMmJc5plS-dsxGUEpyjQuylNyFuMaAEqZsxHpZvsq-G6FYWNa2jYfO6yN7RrvqK-pxbbdtT4iNa5K06Vr3C011GFPzXYbvLErmqKJp437xNg1S_MLr3DT2NQa8NDosOt9eI_n5KQ2bcSLwz0mrw_3L9NZNn9-fJrezTNbcNFlE7WobSEUMAYLgbmVTAmjipJXbGLKirFS1cAmylgmkdUIsgJusZaMlyhsMSZXQ2_aNH0sdnrtd8GlJ3XOAYRKpkRK5UPKBh9jwFpvQ7MxYa8Z6G-7erCrk139Y1f3CSoGKKawW2L4q_6H-gItrn-C</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2500686586</pqid></control><display><type>article</type><title>Hydrothermal liquefaction of cellulose and lignin: a new approach on the investigation of chemical reaction networks</title><source>Springer Nature</source><creator>do Couto Fraga, Adriano ; de Almeida, Marlon Brando Bezerra ; Sousa-Aguiar, Eduardo Falabella</creator><creatorcontrib>do Couto Fraga, Adriano ; de Almeida, Marlon Brando Bezerra ; Sousa-Aguiar, Eduardo Falabella</creatorcontrib><description>Hydrothermal liquefaction is one of the most promising technologies to convert high moisture biomass into biofuels. However, understanding the liquefaction mechanism of different biomass fractions is still a challenge. The liquefaction of both lignin and cellulose is frequently studied, but the high diversity of biomass and processes used to generate these fractions makes the direct comparison difficult. In this work, one studies the liquefaction of lignin which has been generated in the process of lignocellulosic ethanol production employing acidic steam explosion. Results are compared with the liquefaction of commercial cellulose. The results have shown that this kind of lignin could produce higher amounts of bio-oil. Moreover, a model to quantify the contribution of the main kinds of reactions to the liquefaction mechanism was proposed. Dehydration was the main reaction observed for both raw materials, however decarboxylation plays a more relevant role in lignin liquefaction, accounting for near 37% of reactions in liquefaction pathway, whereas for cellulose it represents only 13% of reactions.</description><identifier>ISSN: 0969-0239</identifier><identifier>EISSN: 1572-882X</identifier><identifier>DOI: 10.1007/s10570-020-03658-w</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Biofuels ; Biomass ; Bioorganic Chemistry ; Cellulose ; Ceramics ; Chemical reactions ; Chemistry ; Chemistry and Materials Science ; Composites ; Decarboxylation ; Dehydration ; Ethanol ; Glass ; Lignin ; Lignocellulose ; Liquefaction ; Natural Materials ; Organic Chemistry ; Original Research ; Physical Chemistry ; Polymer Sciences ; Raw materials ; Steam explosions ; Sustainable Development</subject><ispartof>Cellulose (London), 2021-03, Vol.28 (4), p.2003-2020</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-48bfc3680110b6e2c7186a8395d14a9d1198f0148ac17e1fe07d05cef7159e6c3</citedby><cites>FETCH-LOGICAL-c356t-48bfc3680110b6e2c7186a8395d14a9d1198f0148ac17e1fe07d05cef7159e6c3</cites><orcidid>0000-0002-7156-8360</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>do Couto Fraga, Adriano</creatorcontrib><creatorcontrib>de Almeida, Marlon Brando Bezerra</creatorcontrib><creatorcontrib>Sousa-Aguiar, Eduardo Falabella</creatorcontrib><title>Hydrothermal liquefaction of cellulose and lignin: a new approach on the investigation of chemical reaction networks</title><title>Cellulose (London)</title><addtitle>Cellulose</addtitle><description>Hydrothermal liquefaction is one of the most promising technologies to convert high moisture biomass into biofuels. However, understanding the liquefaction mechanism of different biomass fractions is still a challenge. The liquefaction of both lignin and cellulose is frequently studied, but the high diversity of biomass and processes used to generate these fractions makes the direct comparison difficult. In this work, one studies the liquefaction of lignin which has been generated in the process of lignocellulosic ethanol production employing acidic steam explosion. Results are compared with the liquefaction of commercial cellulose. The results have shown that this kind of lignin could produce higher amounts of bio-oil. Moreover, a model to quantify the contribution of the main kinds of reactions to the liquefaction mechanism was proposed. Dehydration was the main reaction observed for both raw materials, however decarboxylation plays a more relevant role in lignin liquefaction, accounting for near 37% of reactions in liquefaction pathway, whereas for cellulose it represents only 13% of reactions.</description><subject>Biofuels</subject><subject>Biomass</subject><subject>Bioorganic Chemistry</subject><subject>Cellulose</subject><subject>Ceramics</subject><subject>Chemical reactions</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Decarboxylation</subject><subject>Dehydration</subject><subject>Ethanol</subject><subject>Glass</subject><subject>Lignin</subject><subject>Lignocellulose</subject><subject>Liquefaction</subject><subject>Natural Materials</subject><subject>Organic Chemistry</subject><subject>Original Research</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Raw materials</subject><subject>Steam explosions</subject><subject>Sustainable Development</subject><issn>0969-0239</issn><issn>1572-882X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OwzAURi0EEqXwAkyWmAPXSf0TNlQBRarEAhKb5To3bUpqFzsl6ttjSAUbg-Xhfufz9SHkksE1A5A3kQGXkEGeTiG4yvojMmJc5plS-dsxGUEpyjQuylNyFuMaAEqZsxHpZvsq-G6FYWNa2jYfO6yN7RrvqK-pxbbdtT4iNa5K06Vr3C011GFPzXYbvLErmqKJp437xNg1S_MLr3DT2NQa8NDosOt9eI_n5KQ2bcSLwz0mrw_3L9NZNn9-fJrezTNbcNFlE7WobSEUMAYLgbmVTAmjipJXbGLKirFS1cAmylgmkdUIsgJusZaMlyhsMSZXQ2_aNH0sdnrtd8GlJ3XOAYRKpkRK5UPKBh9jwFpvQ7MxYa8Z6G-7erCrk139Y1f3CSoGKKawW2L4q_6H-gItrn-C</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>do Couto Fraga, Adriano</creator><creator>de Almeida, Marlon Brando Bezerra</creator><creator>Sousa-Aguiar, Eduardo Falabella</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-7156-8360</orcidid></search><sort><creationdate>20210301</creationdate><title>Hydrothermal liquefaction of cellulose and lignin: a new approach on the investigation of chemical reaction networks</title><author>do Couto Fraga, Adriano ; de Almeida, Marlon Brando Bezerra ; Sousa-Aguiar, Eduardo Falabella</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-48bfc3680110b6e2c7186a8395d14a9d1198f0148ac17e1fe07d05cef7159e6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biofuels</topic><topic>Biomass</topic><topic>Bioorganic Chemistry</topic><topic>Cellulose</topic><topic>Ceramics</topic><topic>Chemical reactions</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Decarboxylation</topic><topic>Dehydration</topic><topic>Ethanol</topic><topic>Glass</topic><topic>Lignin</topic><topic>Lignocellulose</topic><topic>Liquefaction</topic><topic>Natural Materials</topic><topic>Organic Chemistry</topic><topic>Original Research</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Raw materials</topic><topic>Steam explosions</topic><topic>Sustainable Development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>do Couto Fraga, Adriano</creatorcontrib><creatorcontrib>de Almeida, Marlon Brando Bezerra</creatorcontrib><creatorcontrib>Sousa-Aguiar, Eduardo Falabella</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Cellulose (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>do Couto Fraga, Adriano</au><au>de Almeida, Marlon Brando Bezerra</au><au>Sousa-Aguiar, Eduardo Falabella</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrothermal liquefaction of cellulose and lignin: a new approach on the investigation of chemical reaction networks</atitle><jtitle>Cellulose (London)</jtitle><stitle>Cellulose</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>28</volume><issue>4</issue><spage>2003</spage><epage>2020</epage><pages>2003-2020</pages><issn>0969-0239</issn><eissn>1572-882X</eissn><abstract>Hydrothermal liquefaction is one of the most promising technologies to convert high moisture biomass into biofuels. However, understanding the liquefaction mechanism of different biomass fractions is still a challenge. The liquefaction of both lignin and cellulose is frequently studied, but the high diversity of biomass and processes used to generate these fractions makes the direct comparison difficult. In this work, one studies the liquefaction of lignin which has been generated in the process of lignocellulosic ethanol production employing acidic steam explosion. Results are compared with the liquefaction of commercial cellulose. The results have shown that this kind of lignin could produce higher amounts of bio-oil. Moreover, a model to quantify the contribution of the main kinds of reactions to the liquefaction mechanism was proposed. Dehydration was the main reaction observed for both raw materials, however decarboxylation plays a more relevant role in lignin liquefaction, accounting for near 37% of reactions in liquefaction pathway, whereas for cellulose it represents only 13% of reactions.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10570-020-03658-w</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-7156-8360</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0969-0239 |
ispartof | Cellulose (London), 2021-03, Vol.28 (4), p.2003-2020 |
issn | 0969-0239 1572-882X |
language | eng |
recordid | cdi_proquest_journals_2500686586 |
source | Springer Nature |
subjects | Biofuels Biomass Bioorganic Chemistry Cellulose Ceramics Chemical reactions Chemistry Chemistry and Materials Science Composites Decarboxylation Dehydration Ethanol Glass Lignin Lignocellulose Liquefaction Natural Materials Organic Chemistry Original Research Physical Chemistry Polymer Sciences Raw materials Steam explosions Sustainable Development |
title | Hydrothermal liquefaction of cellulose and lignin: a new approach on the investigation of chemical reaction networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T12%3A38%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrothermal%20liquefaction%20of%20cellulose%20and%20lignin:%20a%20new%20approach%20on%20the%20investigation%20of%20chemical%20reaction%20networks&rft.jtitle=Cellulose%20(London)&rft.au=do%20Couto%20Fraga,%20Adriano&rft.date=2021-03-01&rft.volume=28&rft.issue=4&rft.spage=2003&rft.epage=2020&rft.pages=2003-2020&rft.issn=0969-0239&rft.eissn=1572-882X&rft_id=info:doi/10.1007/s10570-020-03658-w&rft_dat=%3Cproquest_cross%3E2500686586%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c356t-48bfc3680110b6e2c7186a8395d14a9d1198f0148ac17e1fe07d05cef7159e6c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2500686586&rft_id=info:pmid/&rfr_iscdi=true |