Loading…

Hydrothermal liquefaction of cellulose and lignin: a new approach on the investigation of chemical reaction networks

Hydrothermal liquefaction is one of the most promising technologies to convert high moisture biomass into biofuels. However, understanding the liquefaction mechanism of different biomass fractions is still a challenge. The liquefaction of both lignin and cellulose is frequently studied, but the high...

Full description

Saved in:
Bibliographic Details
Published in:Cellulose (London) 2021-03, Vol.28 (4), p.2003-2020
Main Authors: do Couto Fraga, Adriano, de Almeida, Marlon Brando Bezerra, Sousa-Aguiar, Eduardo Falabella
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c356t-48bfc3680110b6e2c7186a8395d14a9d1198f0148ac17e1fe07d05cef7159e6c3
cites cdi_FETCH-LOGICAL-c356t-48bfc3680110b6e2c7186a8395d14a9d1198f0148ac17e1fe07d05cef7159e6c3
container_end_page 2020
container_issue 4
container_start_page 2003
container_title Cellulose (London)
container_volume 28
creator do Couto Fraga, Adriano
de Almeida, Marlon Brando Bezerra
Sousa-Aguiar, Eduardo Falabella
description Hydrothermal liquefaction is one of the most promising technologies to convert high moisture biomass into biofuels. However, understanding the liquefaction mechanism of different biomass fractions is still a challenge. The liquefaction of both lignin and cellulose is frequently studied, but the high diversity of biomass and processes used to generate these fractions makes the direct comparison difficult. In this work, one studies the liquefaction of lignin which has been generated in the process of lignocellulosic ethanol production employing acidic steam explosion. Results are compared with the liquefaction of commercial cellulose. The results have shown that this kind of lignin could produce higher amounts of bio-oil. Moreover, a model to quantify the contribution of the main kinds of reactions to the liquefaction mechanism was proposed. Dehydration was the main reaction observed for both raw materials, however decarboxylation plays a more relevant role in lignin liquefaction, accounting for near 37% of reactions in liquefaction pathway, whereas for cellulose it represents only 13% of reactions.
doi_str_mv 10.1007/s10570-020-03658-w
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2500686586</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2500686586</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-48bfc3680110b6e2c7186a8395d14a9d1198f0148ac17e1fe07d05cef7159e6c3</originalsourceid><addsrcrecordid>eNp9kL1OwzAURi0EEqXwAkyWmAPXSf0TNlQBRarEAhKb5To3bUpqFzsl6ttjSAUbg-Xhfufz9SHkksE1A5A3kQGXkEGeTiG4yvojMmJc5plS-dsxGUEpyjQuylNyFuMaAEqZsxHpZvsq-G6FYWNa2jYfO6yN7RrvqK-pxbbdtT4iNa5K06Vr3C011GFPzXYbvLErmqKJp437xNg1S_MLr3DT2NQa8NDosOt9eI_n5KQ2bcSLwz0mrw_3L9NZNn9-fJrezTNbcNFlE7WobSEUMAYLgbmVTAmjipJXbGLKirFS1cAmylgmkdUIsgJusZaMlyhsMSZXQ2_aNH0sdnrtd8GlJ3XOAYRKpkRK5UPKBh9jwFpvQ7MxYa8Z6G-7erCrk139Y1f3CSoGKKawW2L4q_6H-gItrn-C</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2500686586</pqid></control><display><type>article</type><title>Hydrothermal liquefaction of cellulose and lignin: a new approach on the investigation of chemical reaction networks</title><source>Springer Nature</source><creator>do Couto Fraga, Adriano ; de Almeida, Marlon Brando Bezerra ; Sousa-Aguiar, Eduardo Falabella</creator><creatorcontrib>do Couto Fraga, Adriano ; de Almeida, Marlon Brando Bezerra ; Sousa-Aguiar, Eduardo Falabella</creatorcontrib><description>Hydrothermal liquefaction is one of the most promising technologies to convert high moisture biomass into biofuels. However, understanding the liquefaction mechanism of different biomass fractions is still a challenge. The liquefaction of both lignin and cellulose is frequently studied, but the high diversity of biomass and processes used to generate these fractions makes the direct comparison difficult. In this work, one studies the liquefaction of lignin which has been generated in the process of lignocellulosic ethanol production employing acidic steam explosion. Results are compared with the liquefaction of commercial cellulose. The results have shown that this kind of lignin could produce higher amounts of bio-oil. Moreover, a model to quantify the contribution of the main kinds of reactions to the liquefaction mechanism was proposed. Dehydration was the main reaction observed for both raw materials, however decarboxylation plays a more relevant role in lignin liquefaction, accounting for near 37% of reactions in liquefaction pathway, whereas for cellulose it represents only 13% of reactions.</description><identifier>ISSN: 0969-0239</identifier><identifier>EISSN: 1572-882X</identifier><identifier>DOI: 10.1007/s10570-020-03658-w</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Biofuels ; Biomass ; Bioorganic Chemistry ; Cellulose ; Ceramics ; Chemical reactions ; Chemistry ; Chemistry and Materials Science ; Composites ; Decarboxylation ; Dehydration ; Ethanol ; Glass ; Lignin ; Lignocellulose ; Liquefaction ; Natural Materials ; Organic Chemistry ; Original Research ; Physical Chemistry ; Polymer Sciences ; Raw materials ; Steam explosions ; Sustainable Development</subject><ispartof>Cellulose (London), 2021-03, Vol.28 (4), p.2003-2020</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-48bfc3680110b6e2c7186a8395d14a9d1198f0148ac17e1fe07d05cef7159e6c3</citedby><cites>FETCH-LOGICAL-c356t-48bfc3680110b6e2c7186a8395d14a9d1198f0148ac17e1fe07d05cef7159e6c3</cites><orcidid>0000-0002-7156-8360</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>do Couto Fraga, Adriano</creatorcontrib><creatorcontrib>de Almeida, Marlon Brando Bezerra</creatorcontrib><creatorcontrib>Sousa-Aguiar, Eduardo Falabella</creatorcontrib><title>Hydrothermal liquefaction of cellulose and lignin: a new approach on the investigation of chemical reaction networks</title><title>Cellulose (London)</title><addtitle>Cellulose</addtitle><description>Hydrothermal liquefaction is one of the most promising technologies to convert high moisture biomass into biofuels. However, understanding the liquefaction mechanism of different biomass fractions is still a challenge. The liquefaction of both lignin and cellulose is frequently studied, but the high diversity of biomass and processes used to generate these fractions makes the direct comparison difficult. In this work, one studies the liquefaction of lignin which has been generated in the process of lignocellulosic ethanol production employing acidic steam explosion. Results are compared with the liquefaction of commercial cellulose. The results have shown that this kind of lignin could produce higher amounts of bio-oil. Moreover, a model to quantify the contribution of the main kinds of reactions to the liquefaction mechanism was proposed. Dehydration was the main reaction observed for both raw materials, however decarboxylation plays a more relevant role in lignin liquefaction, accounting for near 37% of reactions in liquefaction pathway, whereas for cellulose it represents only 13% of reactions.</description><subject>Biofuels</subject><subject>Biomass</subject><subject>Bioorganic Chemistry</subject><subject>Cellulose</subject><subject>Ceramics</subject><subject>Chemical reactions</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Decarboxylation</subject><subject>Dehydration</subject><subject>Ethanol</subject><subject>Glass</subject><subject>Lignin</subject><subject>Lignocellulose</subject><subject>Liquefaction</subject><subject>Natural Materials</subject><subject>Organic Chemistry</subject><subject>Original Research</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Raw materials</subject><subject>Steam explosions</subject><subject>Sustainable Development</subject><issn>0969-0239</issn><issn>1572-882X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OwzAURi0EEqXwAkyWmAPXSf0TNlQBRarEAhKb5To3bUpqFzsl6ttjSAUbg-Xhfufz9SHkksE1A5A3kQGXkEGeTiG4yvojMmJc5plS-dsxGUEpyjQuylNyFuMaAEqZsxHpZvsq-G6FYWNa2jYfO6yN7RrvqK-pxbbdtT4iNa5K06Vr3C011GFPzXYbvLErmqKJp437xNg1S_MLr3DT2NQa8NDosOt9eI_n5KQ2bcSLwz0mrw_3L9NZNn9-fJrezTNbcNFlE7WobSEUMAYLgbmVTAmjipJXbGLKirFS1cAmylgmkdUIsgJusZaMlyhsMSZXQ2_aNH0sdnrtd8GlJ3XOAYRKpkRK5UPKBh9jwFpvQ7MxYa8Z6G-7erCrk139Y1f3CSoGKKawW2L4q_6H-gItrn-C</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>do Couto Fraga, Adriano</creator><creator>de Almeida, Marlon Brando Bezerra</creator><creator>Sousa-Aguiar, Eduardo Falabella</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-7156-8360</orcidid></search><sort><creationdate>20210301</creationdate><title>Hydrothermal liquefaction of cellulose and lignin: a new approach on the investigation of chemical reaction networks</title><author>do Couto Fraga, Adriano ; de Almeida, Marlon Brando Bezerra ; Sousa-Aguiar, Eduardo Falabella</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-48bfc3680110b6e2c7186a8395d14a9d1198f0148ac17e1fe07d05cef7159e6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biofuels</topic><topic>Biomass</topic><topic>Bioorganic Chemistry</topic><topic>Cellulose</topic><topic>Ceramics</topic><topic>Chemical reactions</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Decarboxylation</topic><topic>Dehydration</topic><topic>Ethanol</topic><topic>Glass</topic><topic>Lignin</topic><topic>Lignocellulose</topic><topic>Liquefaction</topic><topic>Natural Materials</topic><topic>Organic Chemistry</topic><topic>Original Research</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Raw materials</topic><topic>Steam explosions</topic><topic>Sustainable Development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>do Couto Fraga, Adriano</creatorcontrib><creatorcontrib>de Almeida, Marlon Brando Bezerra</creatorcontrib><creatorcontrib>Sousa-Aguiar, Eduardo Falabella</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Cellulose (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>do Couto Fraga, Adriano</au><au>de Almeida, Marlon Brando Bezerra</au><au>Sousa-Aguiar, Eduardo Falabella</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrothermal liquefaction of cellulose and lignin: a new approach on the investigation of chemical reaction networks</atitle><jtitle>Cellulose (London)</jtitle><stitle>Cellulose</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>28</volume><issue>4</issue><spage>2003</spage><epage>2020</epage><pages>2003-2020</pages><issn>0969-0239</issn><eissn>1572-882X</eissn><abstract>Hydrothermal liquefaction is one of the most promising technologies to convert high moisture biomass into biofuels. However, understanding the liquefaction mechanism of different biomass fractions is still a challenge. The liquefaction of both lignin and cellulose is frequently studied, but the high diversity of biomass and processes used to generate these fractions makes the direct comparison difficult. In this work, one studies the liquefaction of lignin which has been generated in the process of lignocellulosic ethanol production employing acidic steam explosion. Results are compared with the liquefaction of commercial cellulose. The results have shown that this kind of lignin could produce higher amounts of bio-oil. Moreover, a model to quantify the contribution of the main kinds of reactions to the liquefaction mechanism was proposed. Dehydration was the main reaction observed for both raw materials, however decarboxylation plays a more relevant role in lignin liquefaction, accounting for near 37% of reactions in liquefaction pathway, whereas for cellulose it represents only 13% of reactions.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10570-020-03658-w</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-7156-8360</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0969-0239
ispartof Cellulose (London), 2021-03, Vol.28 (4), p.2003-2020
issn 0969-0239
1572-882X
language eng
recordid cdi_proquest_journals_2500686586
source Springer Nature
subjects Biofuels
Biomass
Bioorganic Chemistry
Cellulose
Ceramics
Chemical reactions
Chemistry
Chemistry and Materials Science
Composites
Decarboxylation
Dehydration
Ethanol
Glass
Lignin
Lignocellulose
Liquefaction
Natural Materials
Organic Chemistry
Original Research
Physical Chemistry
Polymer Sciences
Raw materials
Steam explosions
Sustainable Development
title Hydrothermal liquefaction of cellulose and lignin: a new approach on the investigation of chemical reaction networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T12%3A38%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrothermal%20liquefaction%20of%20cellulose%20and%20lignin:%20a%20new%20approach%20on%20the%20investigation%20of%20chemical%20reaction%20networks&rft.jtitle=Cellulose%20(London)&rft.au=do%20Couto%20Fraga,%20Adriano&rft.date=2021-03-01&rft.volume=28&rft.issue=4&rft.spage=2003&rft.epage=2020&rft.pages=2003-2020&rft.issn=0969-0239&rft.eissn=1572-882X&rft_id=info:doi/10.1007/s10570-020-03658-w&rft_dat=%3Cproquest_cross%3E2500686586%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c356t-48bfc3680110b6e2c7186a8395d14a9d1198f0148ac17e1fe07d05cef7159e6c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2500686586&rft_id=info:pmid/&rfr_iscdi=true