Loading…

Using an artificial neural network (ANN) for prediction of thermal degradation from kinetics parameters of vegetable fibers

Vegetal fibers are prominent reinforcements for polymer composite materials, considering their properties and application possibilities. In particular, thermal degradation behavior is crucial for determining an application subjected to a temperature range. Methods to predict properties are a trend i...

Full description

Saved in:
Bibliographic Details
Published in:Cellulose (London) 2021-03, Vol.28 (4), p.1961-1971
Main Authors: Monticeli, Francisco M., Neves, Roberta Motta, Ornaghi Júnior, Heitor Luiz
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c356t-82b92bc4f93d73e9968427bda55b3edc825508e6a8d4a23b789c3f2a5cd0a7b43
cites cdi_FETCH-LOGICAL-c356t-82b92bc4f93d73e9968427bda55b3edc825508e6a8d4a23b789c3f2a5cd0a7b43
container_end_page 1971
container_issue 4
container_start_page 1961
container_title Cellulose (London)
container_volume 28
creator Monticeli, Francisco M.
Neves, Roberta Motta
Ornaghi Júnior, Heitor Luiz
description Vegetal fibers are prominent reinforcements for polymer composite materials, considering their properties and application possibilities. In particular, thermal degradation behavior is crucial for determining an application subjected to a temperature range. Methods to predict properties are a trend in materials science and have the main advantage of saving cost and time. For this reason, in the present study, an artificial neural network (ANN) approach was used to predict the thermal degradation curves. The heating rate of 10 °C·min − 1 was carried out to train the network with 12 hidden layers and optimal training dataset of 60. Other heating rates were simulated and showed an excellent agreement with the experimental data. The coefficient of determination was R 2  > 0.99 for all sources of biomass, exhibiting appropriate predictive fit with error following the sequence: ramie (1.15 %) 
doi_str_mv 10.1007/s10570-021-03684-2
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2500691636</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2500691636</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-82b92bc4f93d73e9968427bda55b3edc825508e6a8d4a23b789c3f2a5cd0a7b43</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wFXAjS5GM8lkZrIsxRdI3VhwFzKZZEzbeXiTKuKfN-0I7lxdOPc753IPQucpuU4JKW58SnhBEkLThLC8zBJ6gCYpL2hSlvT1EE2IyEVcM3GMTrxfEUJEQdMJ-l561zVYdVhBcNZppza4M1vYj_DZwxpfzhaLK2x7wAOY2ung-g73Foc3A23katOAqtVettC3eO2i1WmPBwWqNcGA3_EfpjFBVRuDrauidoqOrNp4c_Y7p2h5d_syf0ienu8f57OnRDOeh6SklaCVzqxgdcGMEPE_WlS14rxiptYl5ZyUJldlnSnKqqIUmlmquK6JKqqMTdHFmDtA_741PshVv4UunpSUE5KLNGd5pOhIaei9B2PlAK5V8CVTIncly7FkGUuW-5IljSY2mnyEu8bAX_Q_rh8uqYEe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2500691636</pqid></control><display><type>article</type><title>Using an artificial neural network (ANN) for prediction of thermal degradation from kinetics parameters of vegetable fibers</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Monticeli, Francisco M. ; Neves, Roberta Motta ; Ornaghi Júnior, Heitor Luiz</creator><creatorcontrib>Monticeli, Francisco M. ; Neves, Roberta Motta ; Ornaghi Júnior, Heitor Luiz</creatorcontrib><description>Vegetal fibers are prominent reinforcements for polymer composite materials, considering their properties and application possibilities. In particular, thermal degradation behavior is crucial for determining an application subjected to a temperature range. Methods to predict properties are a trend in materials science and have the main advantage of saving cost and time. For this reason, in the present study, an artificial neural network (ANN) approach was used to predict the thermal degradation curves. The heating rate of 10 °C·min − 1 was carried out to train the network with 12 hidden layers and optimal training dataset of 60. Other heating rates were simulated and showed an excellent agreement with the experimental data. The coefficient of determination was R 2  &gt; 0.99 for all sources of biomass, exhibiting appropriate predictive fit with error following the sequence: ramie (1.15 %) &lt; kenaf (1.33 %) &lt; curaua (1.83 %) &lt; jute (1.97 %). In conclusion, ANNs can learn from their data and optimize processing, formulations, predict properties, and other input data combinations. The predictive curves present high reliability with the experimental fit allowing the prediction of the mass loss for different temperatures versus the heating rate set. Graphic abstract</description><identifier>ISSN: 0969-0239</identifier><identifier>EISSN: 1572-882X</identifier><identifier>DOI: 10.1007/s10570-021-03684-2</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Artificial neural networks ; Bioorganic Chemistry ; Ceramics ; Chemistry ; Chemistry and Materials Science ; Composite materials ; Composites ; Glass ; Heating rate ; Jute ; Kenaf ; Materials science ; Natural Materials ; Neural networks ; Optimization ; Organic Chemistry ; Original Research ; Physical Chemistry ; Polymer matrix composites ; Polymer Sciences ; Predictions ; Properties (attributes) ; Sustainable Development ; Thermal degradation ; Vegetable fibers</subject><ispartof>Cellulose (London), 2021-03, Vol.28 (4), p.1961-1971</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-82b92bc4f93d73e9968427bda55b3edc825508e6a8d4a23b789c3f2a5cd0a7b43</citedby><cites>FETCH-LOGICAL-c356t-82b92bc4f93d73e9968427bda55b3edc825508e6a8d4a23b789c3f2a5cd0a7b43</cites><orcidid>0000-0002-0005-9534 ; 0000-0002-0814-8160 ; 0000-0002-7017-0852</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Monticeli, Francisco M.</creatorcontrib><creatorcontrib>Neves, Roberta Motta</creatorcontrib><creatorcontrib>Ornaghi Júnior, Heitor Luiz</creatorcontrib><title>Using an artificial neural network (ANN) for prediction of thermal degradation from kinetics parameters of vegetable fibers</title><title>Cellulose (London)</title><addtitle>Cellulose</addtitle><description>Vegetal fibers are prominent reinforcements for polymer composite materials, considering their properties and application possibilities. In particular, thermal degradation behavior is crucial for determining an application subjected to a temperature range. Methods to predict properties are a trend in materials science and have the main advantage of saving cost and time. For this reason, in the present study, an artificial neural network (ANN) approach was used to predict the thermal degradation curves. The heating rate of 10 °C·min − 1 was carried out to train the network with 12 hidden layers and optimal training dataset of 60. Other heating rates were simulated and showed an excellent agreement with the experimental data. The coefficient of determination was R 2  &gt; 0.99 for all sources of biomass, exhibiting appropriate predictive fit with error following the sequence: ramie (1.15 %) &lt; kenaf (1.33 %) &lt; curaua (1.83 %) &lt; jute (1.97 %). In conclusion, ANNs can learn from their data and optimize processing, formulations, predict properties, and other input data combinations. The predictive curves present high reliability with the experimental fit allowing the prediction of the mass loss for different temperatures versus the heating rate set. Graphic abstract</description><subject>Artificial neural networks</subject><subject>Bioorganic Chemistry</subject><subject>Ceramics</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Composite materials</subject><subject>Composites</subject><subject>Glass</subject><subject>Heating rate</subject><subject>Jute</subject><subject>Kenaf</subject><subject>Materials science</subject><subject>Natural Materials</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Organic Chemistry</subject><subject>Original Research</subject><subject>Physical Chemistry</subject><subject>Polymer matrix composites</subject><subject>Polymer Sciences</subject><subject>Predictions</subject><subject>Properties (attributes)</subject><subject>Sustainable Development</subject><subject>Thermal degradation</subject><subject>Vegetable fibers</subject><issn>0969-0239</issn><issn>1572-882X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKt_wFXAjS5GM8lkZrIsxRdI3VhwFzKZZEzbeXiTKuKfN-0I7lxdOPc753IPQucpuU4JKW58SnhBEkLThLC8zBJ6gCYpL2hSlvT1EE2IyEVcM3GMTrxfEUJEQdMJ-l561zVYdVhBcNZppza4M1vYj_DZwxpfzhaLK2x7wAOY2ung-g73Foc3A23katOAqtVettC3eO2i1WmPBwWqNcGA3_EfpjFBVRuDrauidoqOrNp4c_Y7p2h5d_syf0ienu8f57OnRDOeh6SklaCVzqxgdcGMEPE_WlS14rxiptYl5ZyUJldlnSnKqqIUmlmquK6JKqqMTdHFmDtA_741PshVv4UunpSUE5KLNGd5pOhIaei9B2PlAK5V8CVTIncly7FkGUuW-5IljSY2mnyEu8bAX_Q_rh8uqYEe</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Monticeli, Francisco M.</creator><creator>Neves, Roberta Motta</creator><creator>Ornaghi Júnior, Heitor Luiz</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-0005-9534</orcidid><orcidid>https://orcid.org/0000-0002-0814-8160</orcidid><orcidid>https://orcid.org/0000-0002-7017-0852</orcidid></search><sort><creationdate>20210301</creationdate><title>Using an artificial neural network (ANN) for prediction of thermal degradation from kinetics parameters of vegetable fibers</title><author>Monticeli, Francisco M. ; Neves, Roberta Motta ; Ornaghi Júnior, Heitor Luiz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-82b92bc4f93d73e9968427bda55b3edc825508e6a8d4a23b789c3f2a5cd0a7b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>Bioorganic Chemistry</topic><topic>Ceramics</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Composite materials</topic><topic>Composites</topic><topic>Glass</topic><topic>Heating rate</topic><topic>Jute</topic><topic>Kenaf</topic><topic>Materials science</topic><topic>Natural Materials</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Organic Chemistry</topic><topic>Original Research</topic><topic>Physical Chemistry</topic><topic>Polymer matrix composites</topic><topic>Polymer Sciences</topic><topic>Predictions</topic><topic>Properties (attributes)</topic><topic>Sustainable Development</topic><topic>Thermal degradation</topic><topic>Vegetable fibers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Monticeli, Francisco M.</creatorcontrib><creatorcontrib>Neves, Roberta Motta</creatorcontrib><creatorcontrib>Ornaghi Júnior, Heitor Luiz</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Cellulose (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Monticeli, Francisco M.</au><au>Neves, Roberta Motta</au><au>Ornaghi Júnior, Heitor Luiz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using an artificial neural network (ANN) for prediction of thermal degradation from kinetics parameters of vegetable fibers</atitle><jtitle>Cellulose (London)</jtitle><stitle>Cellulose</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>28</volume><issue>4</issue><spage>1961</spage><epage>1971</epage><pages>1961-1971</pages><issn>0969-0239</issn><eissn>1572-882X</eissn><abstract>Vegetal fibers are prominent reinforcements for polymer composite materials, considering their properties and application possibilities. In particular, thermal degradation behavior is crucial for determining an application subjected to a temperature range. Methods to predict properties are a trend in materials science and have the main advantage of saving cost and time. For this reason, in the present study, an artificial neural network (ANN) approach was used to predict the thermal degradation curves. The heating rate of 10 °C·min − 1 was carried out to train the network with 12 hidden layers and optimal training dataset of 60. Other heating rates were simulated and showed an excellent agreement with the experimental data. The coefficient of determination was R 2  &gt; 0.99 for all sources of biomass, exhibiting appropriate predictive fit with error following the sequence: ramie (1.15 %) &lt; kenaf (1.33 %) &lt; curaua (1.83 %) &lt; jute (1.97 %). In conclusion, ANNs can learn from their data and optimize processing, formulations, predict properties, and other input data combinations. The predictive curves present high reliability with the experimental fit allowing the prediction of the mass loss for different temperatures versus the heating rate set. Graphic abstract</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10570-021-03684-2</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0005-9534</orcidid><orcidid>https://orcid.org/0000-0002-0814-8160</orcidid><orcidid>https://orcid.org/0000-0002-7017-0852</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0969-0239
ispartof Cellulose (London), 2021-03, Vol.28 (4), p.1961-1971
issn 0969-0239
1572-882X
language eng
recordid cdi_proquest_journals_2500691636
source Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List
subjects Artificial neural networks
Bioorganic Chemistry
Ceramics
Chemistry
Chemistry and Materials Science
Composite materials
Composites
Glass
Heating rate
Jute
Kenaf
Materials science
Natural Materials
Neural networks
Optimization
Organic Chemistry
Original Research
Physical Chemistry
Polymer matrix composites
Polymer Sciences
Predictions
Properties (attributes)
Sustainable Development
Thermal degradation
Vegetable fibers
title Using an artificial neural network (ANN) for prediction of thermal degradation from kinetics parameters of vegetable fibers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A43%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20an%20artificial%20neural%20network%20(ANN)%20for%20prediction%20of%20thermal%20degradation%20from%20kinetics%20parameters%20of%20vegetable%20fibers&rft.jtitle=Cellulose%20(London)&rft.au=Monticeli,%20Francisco%20M.&rft.date=2021-03-01&rft.volume=28&rft.issue=4&rft.spage=1961&rft.epage=1971&rft.pages=1961-1971&rft.issn=0969-0239&rft.eissn=1572-882X&rft_id=info:doi/10.1007/s10570-021-03684-2&rft_dat=%3Cproquest_cross%3E2500691636%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c356t-82b92bc4f93d73e9968427bda55b3edc825508e6a8d4a23b789c3f2a5cd0a7b43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2500691636&rft_id=info:pmid/&rfr_iscdi=true