Loading…
Using an artificial neural network (ANN) for prediction of thermal degradation from kinetics parameters of vegetable fibers
Vegetal fibers are prominent reinforcements for polymer composite materials, considering their properties and application possibilities. In particular, thermal degradation behavior is crucial for determining an application subjected to a temperature range. Methods to predict properties are a trend i...
Saved in:
Published in: | Cellulose (London) 2021-03, Vol.28 (4), p.1961-1971 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c356t-82b92bc4f93d73e9968427bda55b3edc825508e6a8d4a23b789c3f2a5cd0a7b43 |
---|---|
cites | cdi_FETCH-LOGICAL-c356t-82b92bc4f93d73e9968427bda55b3edc825508e6a8d4a23b789c3f2a5cd0a7b43 |
container_end_page | 1971 |
container_issue | 4 |
container_start_page | 1961 |
container_title | Cellulose (London) |
container_volume | 28 |
creator | Monticeli, Francisco M. Neves, Roberta Motta Ornaghi Júnior, Heitor Luiz |
description | Vegetal fibers are prominent reinforcements for polymer composite materials, considering their properties and application possibilities. In particular, thermal degradation behavior is crucial for determining an application subjected to a temperature range. Methods to predict properties are a trend in materials science and have the main advantage of saving cost and time. For this reason, in the present study, an artificial neural network (ANN) approach was used to predict the thermal degradation curves. The heating rate of 10 °C·min
− 1
was carried out to train the network with 12 hidden layers and optimal training dataset of 60. Other heating rates were simulated and showed an excellent agreement with the experimental data. The coefficient of determination was
R
2
> 0.99 for all sources of biomass, exhibiting appropriate predictive fit with error following the sequence: ramie (1.15 %) |
doi_str_mv | 10.1007/s10570-021-03684-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2500691636</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2500691636</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-82b92bc4f93d73e9968427bda55b3edc825508e6a8d4a23b789c3f2a5cd0a7b43</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wFXAjS5GM8lkZrIsxRdI3VhwFzKZZEzbeXiTKuKfN-0I7lxdOPc753IPQucpuU4JKW58SnhBEkLThLC8zBJ6gCYpL2hSlvT1EE2IyEVcM3GMTrxfEUJEQdMJ-l561zVYdVhBcNZppza4M1vYj_DZwxpfzhaLK2x7wAOY2ung-g73Foc3A23katOAqtVettC3eO2i1WmPBwWqNcGA3_EfpjFBVRuDrauidoqOrNp4c_Y7p2h5d_syf0ienu8f57OnRDOeh6SklaCVzqxgdcGMEPE_WlS14rxiptYl5ZyUJldlnSnKqqIUmlmquK6JKqqMTdHFmDtA_741PshVv4UunpSUE5KLNGd5pOhIaei9B2PlAK5V8CVTIncly7FkGUuW-5IljSY2mnyEu8bAX_Q_rh8uqYEe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2500691636</pqid></control><display><type>article</type><title>Using an artificial neural network (ANN) for prediction of thermal degradation from kinetics parameters of vegetable fibers</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Monticeli, Francisco M. ; Neves, Roberta Motta ; Ornaghi Júnior, Heitor Luiz</creator><creatorcontrib>Monticeli, Francisco M. ; Neves, Roberta Motta ; Ornaghi Júnior, Heitor Luiz</creatorcontrib><description>Vegetal fibers are prominent reinforcements for polymer composite materials, considering their properties and application possibilities. In particular, thermal degradation behavior is crucial for determining an application subjected to a temperature range. Methods to predict properties are a trend in materials science and have the main advantage of saving cost and time. For this reason, in the present study, an artificial neural network (ANN) approach was used to predict the thermal degradation curves. The heating rate of 10 °C·min
− 1
was carried out to train the network with 12 hidden layers and optimal training dataset of 60. Other heating rates were simulated and showed an excellent agreement with the experimental data. The coefficient of determination was
R
2
> 0.99 for all sources of biomass, exhibiting appropriate predictive fit with error following the sequence: ramie (1.15 %) < kenaf (1.33 %) < curaua (1.83 %) < jute (1.97 %). In conclusion, ANNs can learn from their data and optimize processing, formulations, predict properties, and other input data combinations. The predictive curves present high reliability with the experimental fit allowing the prediction of the mass loss for different temperatures versus the heating rate set.
Graphic abstract</description><identifier>ISSN: 0969-0239</identifier><identifier>EISSN: 1572-882X</identifier><identifier>DOI: 10.1007/s10570-021-03684-2</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Artificial neural networks ; Bioorganic Chemistry ; Ceramics ; Chemistry ; Chemistry and Materials Science ; Composite materials ; Composites ; Glass ; Heating rate ; Jute ; Kenaf ; Materials science ; Natural Materials ; Neural networks ; Optimization ; Organic Chemistry ; Original Research ; Physical Chemistry ; Polymer matrix composites ; Polymer Sciences ; Predictions ; Properties (attributes) ; Sustainable Development ; Thermal degradation ; Vegetable fibers</subject><ispartof>Cellulose (London), 2021-03, Vol.28 (4), p.1961-1971</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-82b92bc4f93d73e9968427bda55b3edc825508e6a8d4a23b789c3f2a5cd0a7b43</citedby><cites>FETCH-LOGICAL-c356t-82b92bc4f93d73e9968427bda55b3edc825508e6a8d4a23b789c3f2a5cd0a7b43</cites><orcidid>0000-0002-0005-9534 ; 0000-0002-0814-8160 ; 0000-0002-7017-0852</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Monticeli, Francisco M.</creatorcontrib><creatorcontrib>Neves, Roberta Motta</creatorcontrib><creatorcontrib>Ornaghi Júnior, Heitor Luiz</creatorcontrib><title>Using an artificial neural network (ANN) for prediction of thermal degradation from kinetics parameters of vegetable fibers</title><title>Cellulose (London)</title><addtitle>Cellulose</addtitle><description>Vegetal fibers are prominent reinforcements for polymer composite materials, considering their properties and application possibilities. In particular, thermal degradation behavior is crucial for determining an application subjected to a temperature range. Methods to predict properties are a trend in materials science and have the main advantage of saving cost and time. For this reason, in the present study, an artificial neural network (ANN) approach was used to predict the thermal degradation curves. The heating rate of 10 °C·min
− 1
was carried out to train the network with 12 hidden layers and optimal training dataset of 60. Other heating rates were simulated and showed an excellent agreement with the experimental data. The coefficient of determination was
R
2
> 0.99 for all sources of biomass, exhibiting appropriate predictive fit with error following the sequence: ramie (1.15 %) < kenaf (1.33 %) < curaua (1.83 %) < jute (1.97 %). In conclusion, ANNs can learn from their data and optimize processing, formulations, predict properties, and other input data combinations. The predictive curves present high reliability with the experimental fit allowing the prediction of the mass loss for different temperatures versus the heating rate set.
Graphic abstract</description><subject>Artificial neural networks</subject><subject>Bioorganic Chemistry</subject><subject>Ceramics</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Composite materials</subject><subject>Composites</subject><subject>Glass</subject><subject>Heating rate</subject><subject>Jute</subject><subject>Kenaf</subject><subject>Materials science</subject><subject>Natural Materials</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Organic Chemistry</subject><subject>Original Research</subject><subject>Physical Chemistry</subject><subject>Polymer matrix composites</subject><subject>Polymer Sciences</subject><subject>Predictions</subject><subject>Properties (attributes)</subject><subject>Sustainable Development</subject><subject>Thermal degradation</subject><subject>Vegetable fibers</subject><issn>0969-0239</issn><issn>1572-882X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKt_wFXAjS5GM8lkZrIsxRdI3VhwFzKZZEzbeXiTKuKfN-0I7lxdOPc753IPQucpuU4JKW58SnhBEkLThLC8zBJ6gCYpL2hSlvT1EE2IyEVcM3GMTrxfEUJEQdMJ-l561zVYdVhBcNZppza4M1vYj_DZwxpfzhaLK2x7wAOY2ung-g73Foc3A23katOAqtVettC3eO2i1WmPBwWqNcGA3_EfpjFBVRuDrauidoqOrNp4c_Y7p2h5d_syf0ienu8f57OnRDOeh6SklaCVzqxgdcGMEPE_WlS14rxiptYl5ZyUJldlnSnKqqIUmlmquK6JKqqMTdHFmDtA_741PshVv4UunpSUE5KLNGd5pOhIaei9B2PlAK5V8CVTIncly7FkGUuW-5IljSY2mnyEu8bAX_Q_rh8uqYEe</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Monticeli, Francisco M.</creator><creator>Neves, Roberta Motta</creator><creator>Ornaghi Júnior, Heitor Luiz</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-0005-9534</orcidid><orcidid>https://orcid.org/0000-0002-0814-8160</orcidid><orcidid>https://orcid.org/0000-0002-7017-0852</orcidid></search><sort><creationdate>20210301</creationdate><title>Using an artificial neural network (ANN) for prediction of thermal degradation from kinetics parameters of vegetable fibers</title><author>Monticeli, Francisco M. ; Neves, Roberta Motta ; Ornaghi Júnior, Heitor Luiz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-82b92bc4f93d73e9968427bda55b3edc825508e6a8d4a23b789c3f2a5cd0a7b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>Bioorganic Chemistry</topic><topic>Ceramics</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Composite materials</topic><topic>Composites</topic><topic>Glass</topic><topic>Heating rate</topic><topic>Jute</topic><topic>Kenaf</topic><topic>Materials science</topic><topic>Natural Materials</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Organic Chemistry</topic><topic>Original Research</topic><topic>Physical Chemistry</topic><topic>Polymer matrix composites</topic><topic>Polymer Sciences</topic><topic>Predictions</topic><topic>Properties (attributes)</topic><topic>Sustainable Development</topic><topic>Thermal degradation</topic><topic>Vegetable fibers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Monticeli, Francisco M.</creatorcontrib><creatorcontrib>Neves, Roberta Motta</creatorcontrib><creatorcontrib>Ornaghi Júnior, Heitor Luiz</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Cellulose (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Monticeli, Francisco M.</au><au>Neves, Roberta Motta</au><au>Ornaghi Júnior, Heitor Luiz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using an artificial neural network (ANN) for prediction of thermal degradation from kinetics parameters of vegetable fibers</atitle><jtitle>Cellulose (London)</jtitle><stitle>Cellulose</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>28</volume><issue>4</issue><spage>1961</spage><epage>1971</epage><pages>1961-1971</pages><issn>0969-0239</issn><eissn>1572-882X</eissn><abstract>Vegetal fibers are prominent reinforcements for polymer composite materials, considering their properties and application possibilities. In particular, thermal degradation behavior is crucial for determining an application subjected to a temperature range. Methods to predict properties are a trend in materials science and have the main advantage of saving cost and time. For this reason, in the present study, an artificial neural network (ANN) approach was used to predict the thermal degradation curves. The heating rate of 10 °C·min
− 1
was carried out to train the network with 12 hidden layers and optimal training dataset of 60. Other heating rates were simulated and showed an excellent agreement with the experimental data. The coefficient of determination was
R
2
> 0.99 for all sources of biomass, exhibiting appropriate predictive fit with error following the sequence: ramie (1.15 %) < kenaf (1.33 %) < curaua (1.83 %) < jute (1.97 %). In conclusion, ANNs can learn from their data and optimize processing, formulations, predict properties, and other input data combinations. The predictive curves present high reliability with the experimental fit allowing the prediction of the mass loss for different temperatures versus the heating rate set.
Graphic abstract</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10570-021-03684-2</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0005-9534</orcidid><orcidid>https://orcid.org/0000-0002-0814-8160</orcidid><orcidid>https://orcid.org/0000-0002-7017-0852</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0969-0239 |
ispartof | Cellulose (London), 2021-03, Vol.28 (4), p.1961-1971 |
issn | 0969-0239 1572-882X |
language | eng |
recordid | cdi_proquest_journals_2500691636 |
source | Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List |
subjects | Artificial neural networks Bioorganic Chemistry Ceramics Chemistry Chemistry and Materials Science Composite materials Composites Glass Heating rate Jute Kenaf Materials science Natural Materials Neural networks Optimization Organic Chemistry Original Research Physical Chemistry Polymer matrix composites Polymer Sciences Predictions Properties (attributes) Sustainable Development Thermal degradation Vegetable fibers |
title | Using an artificial neural network (ANN) for prediction of thermal degradation from kinetics parameters of vegetable fibers |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A43%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20an%20artificial%20neural%20network%20(ANN)%20for%20prediction%20of%20thermal%20degradation%20from%20kinetics%20parameters%20of%20vegetable%20fibers&rft.jtitle=Cellulose%20(London)&rft.au=Monticeli,%20Francisco%20M.&rft.date=2021-03-01&rft.volume=28&rft.issue=4&rft.spage=1961&rft.epage=1971&rft.pages=1961-1971&rft.issn=0969-0239&rft.eissn=1572-882X&rft_id=info:doi/10.1007/s10570-021-03684-2&rft_dat=%3Cproquest_cross%3E2500691636%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c356t-82b92bc4f93d73e9968427bda55b3edc825508e6a8d4a23b789c3f2a5cd0a7b43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2500691636&rft_id=info:pmid/&rfr_iscdi=true |