Loading…
Polarization-Adjusted Convolutional (PAC) Codes: Sequential Decoding vs List Decoding
In the Shannon lecture at the 2019 International Symposium on Information Theory (ISIT), Ar kan proposed to employ a one-to-one convolutional transform as a pre-coding step before the polar transform. The resulting codes of this concatenation are called polarization-adjusted convolutional (PAC) code...
Saved in:
Published in: | IEEE transactions on vehicular technology 2021-02, Vol.70 (2), p.1434-1447 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c399t-25aee63531968736d3a38a99cb289b047cf4a2f3a7c41aaa002dcfaac5bf504f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c399t-25aee63531968736d3a38a99cb289b047cf4a2f3a7c41aaa002dcfaac5bf504f3 |
container_end_page | 1447 |
container_issue | 2 |
container_start_page | 1434 |
container_title | IEEE transactions on vehicular technology |
container_volume | 70 |
creator | Rowshan, Mohammad Burg, Andreas Viterbo, Emanuele |
description | In the Shannon lecture at the 2019 International Symposium on Information Theory (ISIT), Ar kan proposed to employ a one-to-one convolutional transform as a pre-coding step before the polar transform. The resulting codes of this concatenation are called polarization-adjusted convolutional (PAC) codes . In this scheme, a pair of polar mapper and demapper as pre- and post- processing devices are deployed around a memoryless channel, which provides polarized information to an outer decoder leading to improved error correction performance of the outer code. In this paper, the list decoding and sequential decoding (including Fano decoding and stack decoding) are first adapted for use to decode PAC codes. Then, to reduce the complexity of sequential decoding of PAC/polar codes, we propose (i) an adaptive heuristic metric, (ii) tree search constraints for backtracking to avoid exploration of unlikely sub-paths, and (iii) tree search strategies consistent with the pattern of error occurrence in polar codes. These contribute to the reduction of the average decoding time complexity from 50% to 80%, trading with 0.05 to 0.3 dB degradation in error correction performance within FER = 10^{-3} range, respectively, relative to not applying the corresponding search strategies. Additionally, as an important ingredient in Fano decoding of PAC/polar codes, an efficient computation method for the intermediate LLRs and partial sums is provided. This method is effective in backtracking and avoids storing the intermediate information or restarting the decoding process. Eventually, all three decoding algorithms are compared in terms of performance, complexity, and resource requirements. |
doi_str_mv | 10.1109/TVT.2021.3052550 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2501323418</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9328621</ieee_id><sourcerecordid>2501323418</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-25aee63531968736d3a38a99cb289b047cf4a2f3a7c41aaa002dcfaac5bf504f3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wcuCFz1sTTLJduOtbP2CggVbr2GazcqWdVOT3YL-elNaehrm4X2H4SHkmtERY1Q9LD4XI045GwGVXEp6QgZMgUoVSHVKBpSyPFVSyHNyEcI6rkIoNiDLuWvQ13_Y1a5NJ-W6D50tk8K1W9f0O4hNcjefFPeRlTY8Jh_2p7dtV0c-tcaVdfuVbEMyq0N3BJfkrMIm2KvDHJLl89OieE1n7y9vxWSWGlCqS7lEazOQwFSWjyErASFHpcyK52pFxdhUAnkFODaCISKlvDQVopGrSlJRwZDc7u9uvItfhU6vXe_jy0FzSRlwECyPKbpPGe9C8LbSG19_o__VjOqdPB3l6Z08fZAXKzf7Sm2tPcYV8DzjDP4BZ11qiw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2501323418</pqid></control><display><type>article</type><title>Polarization-Adjusted Convolutional (PAC) Codes: Sequential Decoding vs List Decoding</title><source>IEEE Xplore (Online service)</source><creator>Rowshan, Mohammad ; Burg, Andreas ; Viterbo, Emanuele</creator><creatorcontrib>Rowshan, Mohammad ; Burg, Andreas ; Viterbo, Emanuele</creatorcontrib><description>In the Shannon lecture at the 2019 International Symposium on Information Theory (ISIT), Ar kan proposed to employ a one-to-one convolutional transform as a pre-coding step before the polar transform. The resulting codes of this concatenation are called polarization-adjusted convolutional (PAC) codes . In this scheme, a pair of polar mapper and demapper as pre- and post- processing devices are deployed around a memoryless channel, which provides polarized information to an outer decoder leading to improved error correction performance of the outer code. In this paper, the list decoding and sequential decoding (including Fano decoding and stack decoding) are first adapted for use to decode PAC codes. Then, to reduce the complexity of sequential decoding of PAC/polar codes, we propose (i) an adaptive heuristic metric, (ii) tree search constraints for backtracking to avoid exploration of unlikely sub-paths, and (iii) tree search strategies consistent with the pattern of error occurrence in polar codes. These contribute to the reduction of the average decoding time complexity from 50% to 80%, trading with 0.05 to 0.3 dB degradation in error correction performance within FER = <inline-formula><tex-math notation="LaTeX">10^{-3}</tex-math></inline-formula> range, respectively, relative to not applying the corresponding search strategies. Additionally, as an important ingredient in Fano decoding of PAC/polar codes, an efficient computation method for the intermediate LLRs and partial sums is provided. This method is effective in backtracking and avoids storing the intermediate information or restarting the decoding process. Eventually, all three decoding algorithms are compared in terms of performance, complexity, and resource requirements.</description><identifier>ISSN: 0018-9545</identifier><identifier>EISSN: 1939-9359</identifier><identifier>DOI: 10.1109/TVT.2021.3052550</identifier><identifier>CODEN: ITVTAB</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Codes ; Complexity ; Complexity theory ; Convolutional codes ; Decoding ; Error correction ; Error correction & detection ; Fano algorithm ; Information theory ; list decoding ; Maximum likelihood decoding ; Measurement ; path metric ; Picture archiving and communication systems ; Polar codes ; Polarization ; Polarization-adjusted convolutional codes ; Restarting ; Search methods ; sequential decoding ; stack decoding ; Transforms ; tree search</subject><ispartof>IEEE transactions on vehicular technology, 2021-02, Vol.70 (2), p.1434-1447</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-25aee63531968736d3a38a99cb289b047cf4a2f3a7c41aaa002dcfaac5bf504f3</citedby><cites>FETCH-LOGICAL-c399t-25aee63531968736d3a38a99cb289b047cf4a2f3a7c41aaa002dcfaac5bf504f3</cites><orcidid>0000-0002-5861-2873 ; 0000-0002-7270-5558 ; 0000-0002-2199-5655</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9328621$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Rowshan, Mohammad</creatorcontrib><creatorcontrib>Burg, Andreas</creatorcontrib><creatorcontrib>Viterbo, Emanuele</creatorcontrib><title>Polarization-Adjusted Convolutional (PAC) Codes: Sequential Decoding vs List Decoding</title><title>IEEE transactions on vehicular technology</title><addtitle>TVT</addtitle><description>In the Shannon lecture at the 2019 International Symposium on Information Theory (ISIT), Ar kan proposed to employ a one-to-one convolutional transform as a pre-coding step before the polar transform. The resulting codes of this concatenation are called polarization-adjusted convolutional (PAC) codes . In this scheme, a pair of polar mapper and demapper as pre- and post- processing devices are deployed around a memoryless channel, which provides polarized information to an outer decoder leading to improved error correction performance of the outer code. In this paper, the list decoding and sequential decoding (including Fano decoding and stack decoding) are first adapted for use to decode PAC codes. Then, to reduce the complexity of sequential decoding of PAC/polar codes, we propose (i) an adaptive heuristic metric, (ii) tree search constraints for backtracking to avoid exploration of unlikely sub-paths, and (iii) tree search strategies consistent with the pattern of error occurrence in polar codes. These contribute to the reduction of the average decoding time complexity from 50% to 80%, trading with 0.05 to 0.3 dB degradation in error correction performance within FER = <inline-formula><tex-math notation="LaTeX">10^{-3}</tex-math></inline-formula> range, respectively, relative to not applying the corresponding search strategies. Additionally, as an important ingredient in Fano decoding of PAC/polar codes, an efficient computation method for the intermediate LLRs and partial sums is provided. This method is effective in backtracking and avoids storing the intermediate information or restarting the decoding process. Eventually, all three decoding algorithms are compared in terms of performance, complexity, and resource requirements.</description><subject>Algorithms</subject><subject>Codes</subject><subject>Complexity</subject><subject>Complexity theory</subject><subject>Convolutional codes</subject><subject>Decoding</subject><subject>Error correction</subject><subject>Error correction & detection</subject><subject>Fano algorithm</subject><subject>Information theory</subject><subject>list decoding</subject><subject>Maximum likelihood decoding</subject><subject>Measurement</subject><subject>path metric</subject><subject>Picture archiving and communication systems</subject><subject>Polar codes</subject><subject>Polarization</subject><subject>Polarization-adjusted convolutional codes</subject><subject>Restarting</subject><subject>Search methods</subject><subject>sequential decoding</subject><subject>stack decoding</subject><subject>Transforms</subject><subject>tree search</subject><issn>0018-9545</issn><issn>1939-9359</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWKt3wcuCFz1sTTLJduOtbP2CggVbr2GazcqWdVOT3YL-elNaehrm4X2H4SHkmtERY1Q9LD4XI045GwGVXEp6QgZMgUoVSHVKBpSyPFVSyHNyEcI6rkIoNiDLuWvQ13_Y1a5NJ-W6D50tk8K1W9f0O4hNcjefFPeRlTY8Jh_2p7dtV0c-tcaVdfuVbEMyq0N3BJfkrMIm2KvDHJLl89OieE1n7y9vxWSWGlCqS7lEazOQwFSWjyErASFHpcyK52pFxdhUAnkFODaCISKlvDQVopGrSlJRwZDc7u9uvItfhU6vXe_jy0FzSRlwECyPKbpPGe9C8LbSG19_o__VjOqdPB3l6Z08fZAXKzf7Sm2tPcYV8DzjDP4BZ11qiw</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Rowshan, Mohammad</creator><creator>Burg, Andreas</creator><creator>Viterbo, Emanuele</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5861-2873</orcidid><orcidid>https://orcid.org/0000-0002-7270-5558</orcidid><orcidid>https://orcid.org/0000-0002-2199-5655</orcidid></search><sort><creationdate>20210201</creationdate><title>Polarization-Adjusted Convolutional (PAC) Codes: Sequential Decoding vs List Decoding</title><author>Rowshan, Mohammad ; Burg, Andreas ; Viterbo, Emanuele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-25aee63531968736d3a38a99cb289b047cf4a2f3a7c41aaa002dcfaac5bf504f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Codes</topic><topic>Complexity</topic><topic>Complexity theory</topic><topic>Convolutional codes</topic><topic>Decoding</topic><topic>Error correction</topic><topic>Error correction & detection</topic><topic>Fano algorithm</topic><topic>Information theory</topic><topic>list decoding</topic><topic>Maximum likelihood decoding</topic><topic>Measurement</topic><topic>path metric</topic><topic>Picture archiving and communication systems</topic><topic>Polar codes</topic><topic>Polarization</topic><topic>Polarization-adjusted convolutional codes</topic><topic>Restarting</topic><topic>Search methods</topic><topic>sequential decoding</topic><topic>stack decoding</topic><topic>Transforms</topic><topic>tree search</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rowshan, Mohammad</creatorcontrib><creatorcontrib>Burg, Andreas</creatorcontrib><creatorcontrib>Viterbo, Emanuele</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on vehicular technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rowshan, Mohammad</au><au>Burg, Andreas</au><au>Viterbo, Emanuele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polarization-Adjusted Convolutional (PAC) Codes: Sequential Decoding vs List Decoding</atitle><jtitle>IEEE transactions on vehicular technology</jtitle><stitle>TVT</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>70</volume><issue>2</issue><spage>1434</spage><epage>1447</epage><pages>1434-1447</pages><issn>0018-9545</issn><eissn>1939-9359</eissn><coden>ITVTAB</coden><abstract>In the Shannon lecture at the 2019 International Symposium on Information Theory (ISIT), Ar kan proposed to employ a one-to-one convolutional transform as a pre-coding step before the polar transform. The resulting codes of this concatenation are called polarization-adjusted convolutional (PAC) codes . In this scheme, a pair of polar mapper and demapper as pre- and post- processing devices are deployed around a memoryless channel, which provides polarized information to an outer decoder leading to improved error correction performance of the outer code. In this paper, the list decoding and sequential decoding (including Fano decoding and stack decoding) are first adapted for use to decode PAC codes. Then, to reduce the complexity of sequential decoding of PAC/polar codes, we propose (i) an adaptive heuristic metric, (ii) tree search constraints for backtracking to avoid exploration of unlikely sub-paths, and (iii) tree search strategies consistent with the pattern of error occurrence in polar codes. These contribute to the reduction of the average decoding time complexity from 50% to 80%, trading with 0.05 to 0.3 dB degradation in error correction performance within FER = <inline-formula><tex-math notation="LaTeX">10^{-3}</tex-math></inline-formula> range, respectively, relative to not applying the corresponding search strategies. Additionally, as an important ingredient in Fano decoding of PAC/polar codes, an efficient computation method for the intermediate LLRs and partial sums is provided. This method is effective in backtracking and avoids storing the intermediate information or restarting the decoding process. Eventually, all three decoding algorithms are compared in terms of performance, complexity, and resource requirements.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TVT.2021.3052550</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-5861-2873</orcidid><orcidid>https://orcid.org/0000-0002-7270-5558</orcidid><orcidid>https://orcid.org/0000-0002-2199-5655</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9545 |
ispartof | IEEE transactions on vehicular technology, 2021-02, Vol.70 (2), p.1434-1447 |
issn | 0018-9545 1939-9359 |
language | eng |
recordid | cdi_proquest_journals_2501323418 |
source | IEEE Xplore (Online service) |
subjects | Algorithms Codes Complexity Complexity theory Convolutional codes Decoding Error correction Error correction & detection Fano algorithm Information theory list decoding Maximum likelihood decoding Measurement path metric Picture archiving and communication systems Polar codes Polarization Polarization-adjusted convolutional codes Restarting Search methods sequential decoding stack decoding Transforms tree search |
title | Polarization-Adjusted Convolutional (PAC) Codes: Sequential Decoding vs List Decoding |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A36%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polarization-Adjusted%20Convolutional%20(PAC)%20Codes:%20Sequential%20Decoding%20vs%20List%20Decoding&rft.jtitle=IEEE%20transactions%20on%20vehicular%20technology&rft.au=Rowshan,%20Mohammad&rft.date=2021-02-01&rft.volume=70&rft.issue=2&rft.spage=1434&rft.epage=1447&rft.pages=1434-1447&rft.issn=0018-9545&rft.eissn=1939-9359&rft.coden=ITVTAB&rft_id=info:doi/10.1109/TVT.2021.3052550&rft_dat=%3Cproquest_cross%3E2501323418%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c399t-25aee63531968736d3a38a99cb289b047cf4a2f3a7c41aaa002dcfaac5bf504f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2501323418&rft_id=info:pmid/&rft_ieee_id=9328621&rfr_iscdi=true |