Loading…

Polarization-Adjusted Convolutional (PAC) Codes: Sequential Decoding vs List Decoding

In the Shannon lecture at the 2019 International Symposium on Information Theory (ISIT), Ar kan proposed to employ a one-to-one convolutional transform as a pre-coding step before the polar transform. The resulting codes of this concatenation are called polarization-adjusted convolutional (PAC) code...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on vehicular technology 2021-02, Vol.70 (2), p.1434-1447
Main Authors: Rowshan, Mohammad, Burg, Andreas, Viterbo, Emanuele
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c399t-25aee63531968736d3a38a99cb289b047cf4a2f3a7c41aaa002dcfaac5bf504f3
cites cdi_FETCH-LOGICAL-c399t-25aee63531968736d3a38a99cb289b047cf4a2f3a7c41aaa002dcfaac5bf504f3
container_end_page 1447
container_issue 2
container_start_page 1434
container_title IEEE transactions on vehicular technology
container_volume 70
creator Rowshan, Mohammad
Burg, Andreas
Viterbo, Emanuele
description In the Shannon lecture at the 2019 International Symposium on Information Theory (ISIT), Ar kan proposed to employ a one-to-one convolutional transform as a pre-coding step before the polar transform. The resulting codes of this concatenation are called polarization-adjusted convolutional (PAC) codes . In this scheme, a pair of polar mapper and demapper as pre- and post- processing devices are deployed around a memoryless channel, which provides polarized information to an outer decoder leading to improved error correction performance of the outer code. In this paper, the list decoding and sequential decoding (including Fano decoding and stack decoding) are first adapted for use to decode PAC codes. Then, to reduce the complexity of sequential decoding of PAC/polar codes, we propose (i) an adaptive heuristic metric, (ii) tree search constraints for backtracking to avoid exploration of unlikely sub-paths, and (iii) tree search strategies consistent with the pattern of error occurrence in polar codes. These contribute to the reduction of the average decoding time complexity from 50% to 80%, trading with 0.05 to 0.3 dB degradation in error correction performance within FER = 10^{-3} range, respectively, relative to not applying the corresponding search strategies. Additionally, as an important ingredient in Fano decoding of PAC/polar codes, an efficient computation method for the intermediate LLRs and partial sums is provided. This method is effective in backtracking and avoids storing the intermediate information or restarting the decoding process. Eventually, all three decoding algorithms are compared in terms of performance, complexity, and resource requirements.
doi_str_mv 10.1109/TVT.2021.3052550
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2501323418</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9328621</ieee_id><sourcerecordid>2501323418</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-25aee63531968736d3a38a99cb289b047cf4a2f3a7c41aaa002dcfaac5bf504f3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wcuCFz1sTTLJduOtbP2CggVbr2GazcqWdVOT3YL-elNaehrm4X2H4SHkmtERY1Q9LD4XI045GwGVXEp6QgZMgUoVSHVKBpSyPFVSyHNyEcI6rkIoNiDLuWvQ13_Y1a5NJ-W6D50tk8K1W9f0O4hNcjefFPeRlTY8Jh_2p7dtV0c-tcaVdfuVbEMyq0N3BJfkrMIm2KvDHJLl89OieE1n7y9vxWSWGlCqS7lEazOQwFSWjyErASFHpcyK52pFxdhUAnkFODaCISKlvDQVopGrSlJRwZDc7u9uvItfhU6vXe_jy0FzSRlwECyPKbpPGe9C8LbSG19_o__VjOqdPB3l6Z08fZAXKzf7Sm2tPcYV8DzjDP4BZ11qiw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2501323418</pqid></control><display><type>article</type><title>Polarization-Adjusted Convolutional (PAC) Codes: Sequential Decoding vs List Decoding</title><source>IEEE Xplore (Online service)</source><creator>Rowshan, Mohammad ; Burg, Andreas ; Viterbo, Emanuele</creator><creatorcontrib>Rowshan, Mohammad ; Burg, Andreas ; Viterbo, Emanuele</creatorcontrib><description>In the Shannon lecture at the 2019 International Symposium on Information Theory (ISIT), Ar kan proposed to employ a one-to-one convolutional transform as a pre-coding step before the polar transform. The resulting codes of this concatenation are called polarization-adjusted convolutional (PAC) codes . In this scheme, a pair of polar mapper and demapper as pre- and post- processing devices are deployed around a memoryless channel, which provides polarized information to an outer decoder leading to improved error correction performance of the outer code. In this paper, the list decoding and sequential decoding (including Fano decoding and stack decoding) are first adapted for use to decode PAC codes. Then, to reduce the complexity of sequential decoding of PAC/polar codes, we propose (i) an adaptive heuristic metric, (ii) tree search constraints for backtracking to avoid exploration of unlikely sub-paths, and (iii) tree search strategies consistent with the pattern of error occurrence in polar codes. These contribute to the reduction of the average decoding time complexity from 50% to 80%, trading with 0.05 to 0.3 dB degradation in error correction performance within FER = &lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;10^{-3}&lt;/tex-math&gt;&lt;/inline-formula&gt; range, respectively, relative to not applying the corresponding search strategies. Additionally, as an important ingredient in Fano decoding of PAC/polar codes, an efficient computation method for the intermediate LLRs and partial sums is provided. This method is effective in backtracking and avoids storing the intermediate information or restarting the decoding process. Eventually, all three decoding algorithms are compared in terms of performance, complexity, and resource requirements.</description><identifier>ISSN: 0018-9545</identifier><identifier>EISSN: 1939-9359</identifier><identifier>DOI: 10.1109/TVT.2021.3052550</identifier><identifier>CODEN: ITVTAB</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Codes ; Complexity ; Complexity theory ; Convolutional codes ; Decoding ; Error correction ; Error correction &amp; detection ; Fano algorithm ; Information theory ; list decoding ; Maximum likelihood decoding ; Measurement ; path metric ; Picture archiving and communication systems ; Polar codes ; Polarization ; Polarization-adjusted convolutional codes ; Restarting ; Search methods ; sequential decoding ; stack decoding ; Transforms ; tree search</subject><ispartof>IEEE transactions on vehicular technology, 2021-02, Vol.70 (2), p.1434-1447</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-25aee63531968736d3a38a99cb289b047cf4a2f3a7c41aaa002dcfaac5bf504f3</citedby><cites>FETCH-LOGICAL-c399t-25aee63531968736d3a38a99cb289b047cf4a2f3a7c41aaa002dcfaac5bf504f3</cites><orcidid>0000-0002-5861-2873 ; 0000-0002-7270-5558 ; 0000-0002-2199-5655</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9328621$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Rowshan, Mohammad</creatorcontrib><creatorcontrib>Burg, Andreas</creatorcontrib><creatorcontrib>Viterbo, Emanuele</creatorcontrib><title>Polarization-Adjusted Convolutional (PAC) Codes: Sequential Decoding vs List Decoding</title><title>IEEE transactions on vehicular technology</title><addtitle>TVT</addtitle><description>In the Shannon lecture at the 2019 International Symposium on Information Theory (ISIT), Ar kan proposed to employ a one-to-one convolutional transform as a pre-coding step before the polar transform. The resulting codes of this concatenation are called polarization-adjusted convolutional (PAC) codes . In this scheme, a pair of polar mapper and demapper as pre- and post- processing devices are deployed around a memoryless channel, which provides polarized information to an outer decoder leading to improved error correction performance of the outer code. In this paper, the list decoding and sequential decoding (including Fano decoding and stack decoding) are first adapted for use to decode PAC codes. Then, to reduce the complexity of sequential decoding of PAC/polar codes, we propose (i) an adaptive heuristic metric, (ii) tree search constraints for backtracking to avoid exploration of unlikely sub-paths, and (iii) tree search strategies consistent with the pattern of error occurrence in polar codes. These contribute to the reduction of the average decoding time complexity from 50% to 80%, trading with 0.05 to 0.3 dB degradation in error correction performance within FER = &lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;10^{-3}&lt;/tex-math&gt;&lt;/inline-formula&gt; range, respectively, relative to not applying the corresponding search strategies. Additionally, as an important ingredient in Fano decoding of PAC/polar codes, an efficient computation method for the intermediate LLRs and partial sums is provided. This method is effective in backtracking and avoids storing the intermediate information or restarting the decoding process. Eventually, all three decoding algorithms are compared in terms of performance, complexity, and resource requirements.</description><subject>Algorithms</subject><subject>Codes</subject><subject>Complexity</subject><subject>Complexity theory</subject><subject>Convolutional codes</subject><subject>Decoding</subject><subject>Error correction</subject><subject>Error correction &amp; detection</subject><subject>Fano algorithm</subject><subject>Information theory</subject><subject>list decoding</subject><subject>Maximum likelihood decoding</subject><subject>Measurement</subject><subject>path metric</subject><subject>Picture archiving and communication systems</subject><subject>Polar codes</subject><subject>Polarization</subject><subject>Polarization-adjusted convolutional codes</subject><subject>Restarting</subject><subject>Search methods</subject><subject>sequential decoding</subject><subject>stack decoding</subject><subject>Transforms</subject><subject>tree search</subject><issn>0018-9545</issn><issn>1939-9359</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWKt3wcuCFz1sTTLJduOtbP2CggVbr2GazcqWdVOT3YL-elNaehrm4X2H4SHkmtERY1Q9LD4XI045GwGVXEp6QgZMgUoVSHVKBpSyPFVSyHNyEcI6rkIoNiDLuWvQ13_Y1a5NJ-W6D50tk8K1W9f0O4hNcjefFPeRlTY8Jh_2p7dtV0c-tcaVdfuVbEMyq0N3BJfkrMIm2KvDHJLl89OieE1n7y9vxWSWGlCqS7lEazOQwFSWjyErASFHpcyK52pFxdhUAnkFODaCISKlvDQVopGrSlJRwZDc7u9uvItfhU6vXe_jy0FzSRlwECyPKbpPGe9C8LbSG19_o__VjOqdPB3l6Z08fZAXKzf7Sm2tPcYV8DzjDP4BZ11qiw</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Rowshan, Mohammad</creator><creator>Burg, Andreas</creator><creator>Viterbo, Emanuele</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5861-2873</orcidid><orcidid>https://orcid.org/0000-0002-7270-5558</orcidid><orcidid>https://orcid.org/0000-0002-2199-5655</orcidid></search><sort><creationdate>20210201</creationdate><title>Polarization-Adjusted Convolutional (PAC) Codes: Sequential Decoding vs List Decoding</title><author>Rowshan, Mohammad ; Burg, Andreas ; Viterbo, Emanuele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-25aee63531968736d3a38a99cb289b047cf4a2f3a7c41aaa002dcfaac5bf504f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Codes</topic><topic>Complexity</topic><topic>Complexity theory</topic><topic>Convolutional codes</topic><topic>Decoding</topic><topic>Error correction</topic><topic>Error correction &amp; detection</topic><topic>Fano algorithm</topic><topic>Information theory</topic><topic>list decoding</topic><topic>Maximum likelihood decoding</topic><topic>Measurement</topic><topic>path metric</topic><topic>Picture archiving and communication systems</topic><topic>Polar codes</topic><topic>Polarization</topic><topic>Polarization-adjusted convolutional codes</topic><topic>Restarting</topic><topic>Search methods</topic><topic>sequential decoding</topic><topic>stack decoding</topic><topic>Transforms</topic><topic>tree search</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rowshan, Mohammad</creatorcontrib><creatorcontrib>Burg, Andreas</creatorcontrib><creatorcontrib>Viterbo, Emanuele</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on vehicular technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rowshan, Mohammad</au><au>Burg, Andreas</au><au>Viterbo, Emanuele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polarization-Adjusted Convolutional (PAC) Codes: Sequential Decoding vs List Decoding</atitle><jtitle>IEEE transactions on vehicular technology</jtitle><stitle>TVT</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>70</volume><issue>2</issue><spage>1434</spage><epage>1447</epage><pages>1434-1447</pages><issn>0018-9545</issn><eissn>1939-9359</eissn><coden>ITVTAB</coden><abstract>In the Shannon lecture at the 2019 International Symposium on Information Theory (ISIT), Ar kan proposed to employ a one-to-one convolutional transform as a pre-coding step before the polar transform. The resulting codes of this concatenation are called polarization-adjusted convolutional (PAC) codes . In this scheme, a pair of polar mapper and demapper as pre- and post- processing devices are deployed around a memoryless channel, which provides polarized information to an outer decoder leading to improved error correction performance of the outer code. In this paper, the list decoding and sequential decoding (including Fano decoding and stack decoding) are first adapted for use to decode PAC codes. Then, to reduce the complexity of sequential decoding of PAC/polar codes, we propose (i) an adaptive heuristic metric, (ii) tree search constraints for backtracking to avoid exploration of unlikely sub-paths, and (iii) tree search strategies consistent with the pattern of error occurrence in polar codes. These contribute to the reduction of the average decoding time complexity from 50% to 80%, trading with 0.05 to 0.3 dB degradation in error correction performance within FER = &lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;10^{-3}&lt;/tex-math&gt;&lt;/inline-formula&gt; range, respectively, relative to not applying the corresponding search strategies. Additionally, as an important ingredient in Fano decoding of PAC/polar codes, an efficient computation method for the intermediate LLRs and partial sums is provided. This method is effective in backtracking and avoids storing the intermediate information or restarting the decoding process. Eventually, all three decoding algorithms are compared in terms of performance, complexity, and resource requirements.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TVT.2021.3052550</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-5861-2873</orcidid><orcidid>https://orcid.org/0000-0002-7270-5558</orcidid><orcidid>https://orcid.org/0000-0002-2199-5655</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0018-9545
ispartof IEEE transactions on vehicular technology, 2021-02, Vol.70 (2), p.1434-1447
issn 0018-9545
1939-9359
language eng
recordid cdi_proquest_journals_2501323418
source IEEE Xplore (Online service)
subjects Algorithms
Codes
Complexity
Complexity theory
Convolutional codes
Decoding
Error correction
Error correction & detection
Fano algorithm
Information theory
list decoding
Maximum likelihood decoding
Measurement
path metric
Picture archiving and communication systems
Polar codes
Polarization
Polarization-adjusted convolutional codes
Restarting
Search methods
sequential decoding
stack decoding
Transforms
tree search
title Polarization-Adjusted Convolutional (PAC) Codes: Sequential Decoding vs List Decoding
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A36%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polarization-Adjusted%20Convolutional%20(PAC)%20Codes:%20Sequential%20Decoding%20vs%20List%20Decoding&rft.jtitle=IEEE%20transactions%20on%20vehicular%20technology&rft.au=Rowshan,%20Mohammad&rft.date=2021-02-01&rft.volume=70&rft.issue=2&rft.spage=1434&rft.epage=1447&rft.pages=1434-1447&rft.issn=0018-9545&rft.eissn=1939-9359&rft.coden=ITVTAB&rft_id=info:doi/10.1109/TVT.2021.3052550&rft_dat=%3Cproquest_cross%3E2501323418%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c399t-25aee63531968736d3a38a99cb289b047cf4a2f3a7c41aaa002dcfaac5bf504f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2501323418&rft_id=info:pmid/&rft_ieee_id=9328621&rfr_iscdi=true