Loading…
MADneSs: A Multi-Layer Anomaly Detection Framework for Complex Dynamic Systems
Anomaly detection can infer the presence of errors without observing the target services, but detecting variations in the observable parts of the system on which the services reside. This is a promising technique in complex software-intensive systems, because either instrumenting the services'...
Saved in:
Published in: | IEEE transactions on dependable and secure computing 2021-03, Vol.18 (2), p.796-809 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c336t-e24275e2afdbb4f59421e875044236895bf08e4a81c6edf0cebdb0b2a416812d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c336t-e24275e2afdbb4f59421e875044236895bf08e4a81c6edf0cebdb0b2a416812d3 |
container_end_page | 809 |
container_issue | 2 |
container_start_page | 796 |
container_title | IEEE transactions on dependable and secure computing |
container_volume | 18 |
creator | Zoppi, Tommaso Ceccarelli, Andrea Bondavalli, Andrea |
description | Anomaly detection can infer the presence of errors without observing the target services, but detecting variations in the observable parts of the system on which the services reside. This is a promising technique in complex software-intensive systems, because either instrumenting the services' internals is exceedingly time-consuming, or encapsulation makes them not accessible. Unfortunately, in such systems anomaly detection is often ineffective due to their dynamicity, which implies changes in the services or their expected workload. Here we present our approach to enhance the efficacy of anomaly detection in complex, dynamic software-intensive systems. After discussing the related challenges, we present MADneSs, an anomaly detection framework tailored for the above systems that includes an adaptive multi-layer monitoring module. Monitored data are then processed by the anomaly detector, which adapts its parameters depending on the current system behavior. An anomaly alert is provided if the analysis conducted by the anomaly detector identify unexpected trends in the data. MADneSs is evaluated through an experimental campaign on two service-oriented architectures; software faults are injected in the application layer, and detected through monitoring of underlying system layers. Lastly, we quantitatively and qualitatively discuss our results with respect to state-of-the-art solutions, highlighting the key contributions of MADneSs. |
doi_str_mv | 10.1109/TDSC.2019.2908366 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2501327638</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8726140</ieee_id><sourcerecordid>2501327638</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-e24275e2afdbb4f59421e875044236895bf08e4a81c6edf0cebdb0b2a416812d3</originalsourceid><addsrcrecordid>eNo9kD1PwzAURS0EEqXwAxCLJeYUf8Wx2aKEAlILQ8tsOcmLlJLExU4F-fekKmJ6dzj3PukgdEvJglKiH7b5JlswQvWCaaK4lGdoRrWgESFUnU85FnEU64ReoqsQdoQwobSYobd1mvewCY84xetDOzTRyo7gcdq7zrYjzmGAcmhcj5fedvDt_CeunceZ6_Yt_OB87G3XlHgzhgG6cI0uatsGuPm7c_SxfNpmL9Hq_fk1S1dRybkcImCCJTEwW1dFIepYC0ZBJTERgnGpdFzURIGwipYSqpqUUFQFKZgVVCrKKj5H96fdvXdfBwiD2bmD76eXhsWEcpZIriaKnqjSuxA81Gbvm8760VBijtrMUZs5ajN_2qbO3anTAMA_rxImqSD8FyqWZ-0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2501327638</pqid></control><display><type>article</type><title>MADneSs: A Multi-Layer Anomaly Detection Framework for Complex Dynamic Systems</title><source>IEEE Xplore (Online service)</source><creator>Zoppi, Tommaso ; Ceccarelli, Andrea ; Bondavalli, Andrea</creator><creatorcontrib>Zoppi, Tommaso ; Ceccarelli, Andrea ; Bondavalli, Andrea</creatorcontrib><description>Anomaly detection can infer the presence of errors without observing the target services, but detecting variations in the observable parts of the system on which the services reside. This is a promising technique in complex software-intensive systems, because either instrumenting the services' internals is exceedingly time-consuming, or encapsulation makes them not accessible. Unfortunately, in such systems anomaly detection is often ineffective due to their dynamicity, which implies changes in the services or their expected workload. Here we present our approach to enhance the efficacy of anomaly detection in complex, dynamic software-intensive systems. After discussing the related challenges, we present MADneSs, an anomaly detection framework tailored for the above systems that includes an adaptive multi-layer monitoring module. Monitored data are then processed by the anomaly detector, which adapts its parameters depending on the current system behavior. An anomaly alert is provided if the analysis conducted by the anomaly detector identify unexpected trends in the data. MADneSs is evaluated through an experimental campaign on two service-oriented architectures; software faults are injected in the application layer, and detected through monitoring of underlying system layers. Lastly, we quantitatively and qualitatively discuss our results with respect to state-of-the-art solutions, highlighting the key contributions of MADneSs.</description><identifier>ISSN: 1545-5971</identifier><identifier>EISSN: 1941-0018</identifier><identifier>DOI: 10.1109/TDSC.2019.2908366</identifier><identifier>CODEN: ITDSCM</identifier><language>eng</language><publisher>Washington: IEEE</publisher><subject>Adaptive systems ; Anomalies ; Anomaly detection ; Complex systems ; context-awareness ; Detectors ; dynamicity ; Fault detection ; Heuristic algorithms ; MADneSs ; Monitoring ; multi-layer ; Multilayers ; Service oriented architecture ; SOA ; Software ; software-intensive system ; Target detection</subject><ispartof>IEEE transactions on dependable and secure computing, 2021-03, Vol.18 (2), p.796-809</ispartof><rights>Copyright IEEE Computer Society 2021</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-e24275e2afdbb4f59421e875044236895bf08e4a81c6edf0cebdb0b2a416812d3</citedby><cites>FETCH-LOGICAL-c336t-e24275e2afdbb4f59421e875044236895bf08e4a81c6edf0cebdb0b2a416812d3</cites><orcidid>0000-0001-9820-6047 ; 0000-0002-2291-2428 ; 0000-0001-7366-6530</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8726140$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,27905,27906,54777</link.rule.ids></links><search><creatorcontrib>Zoppi, Tommaso</creatorcontrib><creatorcontrib>Ceccarelli, Andrea</creatorcontrib><creatorcontrib>Bondavalli, Andrea</creatorcontrib><title>MADneSs: A Multi-Layer Anomaly Detection Framework for Complex Dynamic Systems</title><title>IEEE transactions on dependable and secure computing</title><addtitle>TDSC</addtitle><description>Anomaly detection can infer the presence of errors without observing the target services, but detecting variations in the observable parts of the system on which the services reside. This is a promising technique in complex software-intensive systems, because either instrumenting the services' internals is exceedingly time-consuming, or encapsulation makes them not accessible. Unfortunately, in such systems anomaly detection is often ineffective due to their dynamicity, which implies changes in the services or their expected workload. Here we present our approach to enhance the efficacy of anomaly detection in complex, dynamic software-intensive systems. After discussing the related challenges, we present MADneSs, an anomaly detection framework tailored for the above systems that includes an adaptive multi-layer monitoring module. Monitored data are then processed by the anomaly detector, which adapts its parameters depending on the current system behavior. An anomaly alert is provided if the analysis conducted by the anomaly detector identify unexpected trends in the data. MADneSs is evaluated through an experimental campaign on two service-oriented architectures; software faults are injected in the application layer, and detected through monitoring of underlying system layers. Lastly, we quantitatively and qualitatively discuss our results with respect to state-of-the-art solutions, highlighting the key contributions of MADneSs.</description><subject>Adaptive systems</subject><subject>Anomalies</subject><subject>Anomaly detection</subject><subject>Complex systems</subject><subject>context-awareness</subject><subject>Detectors</subject><subject>dynamicity</subject><subject>Fault detection</subject><subject>Heuristic algorithms</subject><subject>MADneSs</subject><subject>Monitoring</subject><subject>multi-layer</subject><subject>Multilayers</subject><subject>Service oriented architecture</subject><subject>SOA</subject><subject>Software</subject><subject>software-intensive system</subject><subject>Target detection</subject><issn>1545-5971</issn><issn>1941-0018</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><recordid>eNo9kD1PwzAURS0EEqXwAxCLJeYUf8Wx2aKEAlILQ8tsOcmLlJLExU4F-fekKmJ6dzj3PukgdEvJglKiH7b5JlswQvWCaaK4lGdoRrWgESFUnU85FnEU64ReoqsQdoQwobSYobd1mvewCY84xetDOzTRyo7gcdq7zrYjzmGAcmhcj5fedvDt_CeunceZ6_Yt_OB87G3XlHgzhgG6cI0uatsGuPm7c_SxfNpmL9Hq_fk1S1dRybkcImCCJTEwW1dFIepYC0ZBJTERgnGpdFzURIGwipYSqpqUUFQFKZgVVCrKKj5H96fdvXdfBwiD2bmD76eXhsWEcpZIriaKnqjSuxA81Gbvm8760VBijtrMUZs5ajN_2qbO3anTAMA_rxImqSD8FyqWZ-0</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Zoppi, Tommaso</creator><creator>Ceccarelli, Andrea</creator><creator>Bondavalli, Andrea</creator><general>IEEE</general><general>IEEE Computer Society</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0001-9820-6047</orcidid><orcidid>https://orcid.org/0000-0002-2291-2428</orcidid><orcidid>https://orcid.org/0000-0001-7366-6530</orcidid></search><sort><creationdate>20210301</creationdate><title>MADneSs: A Multi-Layer Anomaly Detection Framework for Complex Dynamic Systems</title><author>Zoppi, Tommaso ; Ceccarelli, Andrea ; Bondavalli, Andrea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-e24275e2afdbb4f59421e875044236895bf08e4a81c6edf0cebdb0b2a416812d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptive systems</topic><topic>Anomalies</topic><topic>Anomaly detection</topic><topic>Complex systems</topic><topic>context-awareness</topic><topic>Detectors</topic><topic>dynamicity</topic><topic>Fault detection</topic><topic>Heuristic algorithms</topic><topic>MADneSs</topic><topic>Monitoring</topic><topic>multi-layer</topic><topic>Multilayers</topic><topic>Service oriented architecture</topic><topic>SOA</topic><topic>Software</topic><topic>software-intensive system</topic><topic>Target detection</topic><toplevel>online_resources</toplevel><creatorcontrib>Zoppi, Tommaso</creatorcontrib><creatorcontrib>Ceccarelli, Andrea</creatorcontrib><creatorcontrib>Bondavalli, Andrea</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>IEEE transactions on dependable and secure computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zoppi, Tommaso</au><au>Ceccarelli, Andrea</au><au>Bondavalli, Andrea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MADneSs: A Multi-Layer Anomaly Detection Framework for Complex Dynamic Systems</atitle><jtitle>IEEE transactions on dependable and secure computing</jtitle><stitle>TDSC</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>18</volume><issue>2</issue><spage>796</spage><epage>809</epage><pages>796-809</pages><issn>1545-5971</issn><eissn>1941-0018</eissn><coden>ITDSCM</coden><abstract>Anomaly detection can infer the presence of errors without observing the target services, but detecting variations in the observable parts of the system on which the services reside. This is a promising technique in complex software-intensive systems, because either instrumenting the services' internals is exceedingly time-consuming, or encapsulation makes them not accessible. Unfortunately, in such systems anomaly detection is often ineffective due to their dynamicity, which implies changes in the services or their expected workload. Here we present our approach to enhance the efficacy of anomaly detection in complex, dynamic software-intensive systems. After discussing the related challenges, we present MADneSs, an anomaly detection framework tailored for the above systems that includes an adaptive multi-layer monitoring module. Monitored data are then processed by the anomaly detector, which adapts its parameters depending on the current system behavior. An anomaly alert is provided if the analysis conducted by the anomaly detector identify unexpected trends in the data. MADneSs is evaluated through an experimental campaign on two service-oriented architectures; software faults are injected in the application layer, and detected through monitoring of underlying system layers. Lastly, we quantitatively and qualitatively discuss our results with respect to state-of-the-art solutions, highlighting the key contributions of MADneSs.</abstract><cop>Washington</cop><pub>IEEE</pub><doi>10.1109/TDSC.2019.2908366</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-9820-6047</orcidid><orcidid>https://orcid.org/0000-0002-2291-2428</orcidid><orcidid>https://orcid.org/0000-0001-7366-6530</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-5971 |
ispartof | IEEE transactions on dependable and secure computing, 2021-03, Vol.18 (2), p.796-809 |
issn | 1545-5971 1941-0018 |
language | eng |
recordid | cdi_proquest_journals_2501327638 |
source | IEEE Xplore (Online service) |
subjects | Adaptive systems Anomalies Anomaly detection Complex systems context-awareness Detectors dynamicity Fault detection Heuristic algorithms MADneSs Monitoring multi-layer Multilayers Service oriented architecture SOA Software software-intensive system Target detection |
title | MADneSs: A Multi-Layer Anomaly Detection Framework for Complex Dynamic Systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A54%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MADneSs:%20A%20Multi-Layer%20Anomaly%20Detection%20Framework%20for%20Complex%20Dynamic%20Systems&rft.jtitle=IEEE%20transactions%20on%20dependable%20and%20secure%20computing&rft.au=Zoppi,%20Tommaso&rft.date=2021-03-01&rft.volume=18&rft.issue=2&rft.spage=796&rft.epage=809&rft.pages=796-809&rft.issn=1545-5971&rft.eissn=1941-0018&rft.coden=ITDSCM&rft_id=info:doi/10.1109/TDSC.2019.2908366&rft_dat=%3Cproquest_cross%3E2501327638%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c336t-e24275e2afdbb4f59421e875044236895bf08e4a81c6edf0cebdb0b2a416812d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2501327638&rft_id=info:pmid/&rft_ieee_id=8726140&rfr_iscdi=true |