Loading…
Exponentiable Grothendieck categories in flat Algebraic Geometry
We introduce and describe the \(2\)-category \(\mathsf{Grt}_{\flat}\) of Grothendieck categories and flat morphisms between them. First, we show that the tensor product of locally presentable linear categories \(\boxtimes\) restricts nicely to \(\mathsf{Grt}_{\flat}\). Then, we characterize exponent...
Saved in:
Published in: | arXiv.org 2022-05 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Ivan Di Liberti Julia Ramos González |
description | We introduce and describe the \(2\)-category \(\mathsf{Grt}_{\flat}\) of Grothendieck categories and flat morphisms between them. First, we show that the tensor product of locally presentable linear categories \(\boxtimes\) restricts nicely to \(\mathsf{Grt}_{\flat}\). Then, we characterize exponentiable objects with respect to \(\boxtimes\): these are continuous Grothendieck categories. In particular, locally finitely presentable Grothendieck categories are exponentiable. Consequently, we have that, for a quasi-compact quasi-separated scheme \(X\), the category of quasi-coherent sheaves \(\mathsf{Qcoh}(X)\) is exponentiable. Finally, we provide a family of examples and concrete computations of exponentials. |
doi_str_mv | 10.48550/arxiv.2103.07876 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2501662963</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2501662963</sourcerecordid><originalsourceid>FETCH-LOGICAL-a523-52a8b073dcd571be64d45e7b988c04be7c713b47e227ec7d26d7aa9416bca4613</originalsourceid><addsrcrecordid>eNotzctKAzEUgOEgCJbaB3AXcD1jcnKdnaXUUSi46b7kclpTx0nNpFLfXkFX_-77CbnjrJVWKfbgyiV9tcCZaJmxRl-RGQjBGysBbshimo6MMdAGlBIz8ri-nPKIY03OD0j7kusbjjFheKfBVTzkknCiaaT7wVW6HA7oi0uB9pg_sJbvW3K9d8OEi__OyfZpvV09N5vX_mW13DROgWgUOOuZETFEZbhHLaNUaHxnbWDSowmGCy8NAhgMJoKOxrlOcu2Dk5qLObn_Y08lf55xqrtjPpfx97gDxbjW0GkhfgCumksZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2501662963</pqid></control><display><type>article</type><title>Exponentiable Grothendieck categories in flat Algebraic Geometry</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Ivan Di Liberti ; Julia Ramos González</creator><creatorcontrib>Ivan Di Liberti ; Julia Ramos González</creatorcontrib><description>We introduce and describe the \(2\)-category \(\mathsf{Grt}_{\flat}\) of Grothendieck categories and flat morphisms between them. First, we show that the tensor product of locally presentable linear categories \(\boxtimes\) restricts nicely to \(\mathsf{Grt}_{\flat}\). Then, we characterize exponentiable objects with respect to \(\boxtimes\): these are continuous Grothendieck categories. In particular, locally finitely presentable Grothendieck categories are exponentiable. Consequently, we have that, for a quasi-compact quasi-separated scheme \(X\), the category of quasi-coherent sheaves \(\mathsf{Qcoh}(X)\) is exponentiable. Finally, we provide a family of examples and concrete computations of exponentials.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2103.07876</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Categories ; Sheaves ; Tensors</subject><ispartof>arXiv.org, 2022-05</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2501662963?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Ivan Di Liberti</creatorcontrib><creatorcontrib>Julia Ramos González</creatorcontrib><title>Exponentiable Grothendieck categories in flat Algebraic Geometry</title><title>arXiv.org</title><description>We introduce and describe the \(2\)-category \(\mathsf{Grt}_{\flat}\) of Grothendieck categories and flat morphisms between them. First, we show that the tensor product of locally presentable linear categories \(\boxtimes\) restricts nicely to \(\mathsf{Grt}_{\flat}\). Then, we characterize exponentiable objects with respect to \(\boxtimes\): these are continuous Grothendieck categories. In particular, locally finitely presentable Grothendieck categories are exponentiable. Consequently, we have that, for a quasi-compact quasi-separated scheme \(X\), the category of quasi-coherent sheaves \(\mathsf{Qcoh}(X)\) is exponentiable. Finally, we provide a family of examples and concrete computations of exponentials.</description><subject>Categories</subject><subject>Sheaves</subject><subject>Tensors</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotzctKAzEUgOEgCJbaB3AXcD1jcnKdnaXUUSi46b7kclpTx0nNpFLfXkFX_-77CbnjrJVWKfbgyiV9tcCZaJmxRl-RGQjBGysBbshimo6MMdAGlBIz8ri-nPKIY03OD0j7kusbjjFheKfBVTzkknCiaaT7wVW6HA7oi0uB9pg_sJbvW3K9d8OEi__OyfZpvV09N5vX_mW13DROgWgUOOuZETFEZbhHLaNUaHxnbWDSowmGCy8NAhgMJoKOxrlOcu2Dk5qLObn_Y08lf55xqrtjPpfx97gDxbjW0GkhfgCumksZ</recordid><startdate>20220502</startdate><enddate>20220502</enddate><creator>Ivan Di Liberti</creator><creator>Julia Ramos González</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220502</creationdate><title>Exponentiable Grothendieck categories in flat Algebraic Geometry</title><author>Ivan Di Liberti ; Julia Ramos González</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a523-52a8b073dcd571be64d45e7b988c04be7c713b47e227ec7d26d7aa9416bca4613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Categories</topic><topic>Sheaves</topic><topic>Tensors</topic><toplevel>online_resources</toplevel><creatorcontrib>Ivan Di Liberti</creatorcontrib><creatorcontrib>Julia Ramos González</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ivan Di Liberti</au><au>Julia Ramos González</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exponentiable Grothendieck categories in flat Algebraic Geometry</atitle><jtitle>arXiv.org</jtitle><date>2022-05-02</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>We introduce and describe the \(2\)-category \(\mathsf{Grt}_{\flat}\) of Grothendieck categories and flat morphisms between them. First, we show that the tensor product of locally presentable linear categories \(\boxtimes\) restricts nicely to \(\mathsf{Grt}_{\flat}\). Then, we characterize exponentiable objects with respect to \(\boxtimes\): these are continuous Grothendieck categories. In particular, locally finitely presentable Grothendieck categories are exponentiable. Consequently, we have that, for a quasi-compact quasi-separated scheme \(X\), the category of quasi-coherent sheaves \(\mathsf{Qcoh}(X)\) is exponentiable. Finally, we provide a family of examples and concrete computations of exponentials.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2103.07876</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2501662963 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Categories Sheaves Tensors |
title | Exponentiable Grothendieck categories in flat Algebraic Geometry |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A24%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exponentiable%20Grothendieck%20categories%20in%20flat%20Algebraic%20Geometry&rft.jtitle=arXiv.org&rft.au=Ivan%20Di%20Liberti&rft.date=2022-05-02&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2103.07876&rft_dat=%3Cproquest%3E2501662963%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a523-52a8b073dcd571be64d45e7b988c04be7c713b47e227ec7d26d7aa9416bca4613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2501662963&rft_id=info:pmid/&rfr_iscdi=true |