Loading…

Titanium dioxide doped hydroxyapatite incorporated photocatalytic membranes for the degradation of chloramphenicol antibiotic in water

BACKGROUND In the recent years, photocatalytic membrane process has gained interest in wastewater treatment applications. In this study, the ability of advanced oxidation technology coupled membrane process was evaluated during chloramphenicol (CAP) filtration. Titanium dioxide doped hydroxyapatite...

Full description

Saved in:
Bibliographic Details
Published in:Journal of chemical technology and biotechnology (1986) 2021-04, Vol.96 (4), p.1057-1066
Main Authors: Singh, Anirudh, Ramachandran, Sathish Kumar, Gumpu, Manju Bhargavi, Zsuzsanna, Laszlo, Veréb, Gábor, Kertész, Szabolcs, Gangasalam, Arthanareeswaran
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4007-74d1ed28eb4df17172803206c59b446f616deb035e168ecba1be6ef4db0992e43
cites cdi_FETCH-LOGICAL-c4007-74d1ed28eb4df17172803206c59b446f616deb035e168ecba1be6ef4db0992e43
container_end_page 1066
container_issue 4
container_start_page 1057
container_title Journal of chemical technology and biotechnology (1986)
container_volume 96
creator Singh, Anirudh
Ramachandran, Sathish Kumar
Gumpu, Manju Bhargavi
Zsuzsanna, Laszlo
Veréb, Gábor
Kertész, Szabolcs
Gangasalam, Arthanareeswaran
description BACKGROUND In the recent years, photocatalytic membrane process has gained interest in wastewater treatment applications. In this study, the ability of advanced oxidation technology coupled membrane process was evaluated during chloramphenicol (CAP) filtration. Titanium dioxide doped hydroxyapatite (TiO2‐HAP) based photocatalytic membrane for chloramphenicol (CAP) degradation was investigated. The TiO2‐HAP photocatalyst was synthesized by a facile hydrothermal technique and characterized by the transmission electron microscope, X‐ray diffraction, and FTIR spectroscopy. Varying concentrations of TiO2‐HAP photocatalyst incorporated polysulfone (PSf) membranes were fabricated to enhance the photocatalytic activity and antifouling propensity. The photocatalytic activity of TiO2‐HAP incorporated PSf membranes was evaluated by a low‐pressure cross‐flow lab‐scale photocatalytic membrane reactor (PMR) for degradation of chloramphenicol in water. These results were compared with pristine PSf membrane. RESULTS The degradation of chloramphenicol was measured by liquid chromatography‐mass spectrometry (LC–MS). The photocatalytic degradation experiments revealed that the highest degradation of 61.59% was observed for the PSf/4 wt% TiO2‐HAP nanocomposite membrane. CONCLUSION This study highlights the advantages of applying the photocatalytic TiO2‐HAP incorporated PSf composite membranes for pharmaceutical wastewater treatment applications. © 2020 Society of Chemical Industry
doi_str_mv 10.1002/jctb.6617
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2501873194</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2501873194</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4007-74d1ed28eb4df17172803206c59b446f616deb035e168ecba1be6ef4db0992e43</originalsourceid><addsrcrecordid>eNp1kL1OwzAUhS0EEqUw8AaWmBjSXruJk4xQ8atKLGWO_HNDXCVxcFyVvADPTUJZme5wvu9c6RByzWDBAPhyp4NaCMHSEzJjkKdRLASckhlwkUU8SZNzctH3OwAQGRcz8r21QbZ231Bj3Zc1SI3r0NBqMN59DbKTwQakttXOd87LMGZd5YLTMsh6CFbTBhvlZYs9LZ2noRor8MNLM5qupa6kuqpHs-kqbK12NZVtsMq6ybUtPYyd_pKclbLu8ervzsn748N2_Rxt3p5e1nebSMcAaZTGhqHhGarYlCxlKc9gxUHoJFdxLErBhEEFqwSZyFAryRQKLGOjIM85xqs5uTn2dt597rEPxc7tfTu-LHgCLEtXLJ-o2yOlvet7j2XRedtIPxQMimnmYpq5mGYe2eWRPdgah__B4nW9vf81fgCI94NJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2501873194</pqid></control><display><type>article</type><title>Titanium dioxide doped hydroxyapatite incorporated photocatalytic membranes for the degradation of chloramphenicol antibiotic in water</title><source>Wiley</source><creator>Singh, Anirudh ; Ramachandran, Sathish Kumar ; Gumpu, Manju Bhargavi ; Zsuzsanna, Laszlo ; Veréb, Gábor ; Kertész, Szabolcs ; Gangasalam, Arthanareeswaran</creator><creatorcontrib>Singh, Anirudh ; Ramachandran, Sathish Kumar ; Gumpu, Manju Bhargavi ; Zsuzsanna, Laszlo ; Veréb, Gábor ; Kertész, Szabolcs ; Gangasalam, Arthanareeswaran</creatorcontrib><description>BACKGROUND In the recent years, photocatalytic membrane process has gained interest in wastewater treatment applications. In this study, the ability of advanced oxidation technology coupled membrane process was evaluated during chloramphenicol (CAP) filtration. Titanium dioxide doped hydroxyapatite (TiO2‐HAP) based photocatalytic membrane for chloramphenicol (CAP) degradation was investigated. The TiO2‐HAP photocatalyst was synthesized by a facile hydrothermal technique and characterized by the transmission electron microscope, X‐ray diffraction, and FTIR spectroscopy. Varying concentrations of TiO2‐HAP photocatalyst incorporated polysulfone (PSf) membranes were fabricated to enhance the photocatalytic activity and antifouling propensity. The photocatalytic activity of TiO2‐HAP incorporated PSf membranes was evaluated by a low‐pressure cross‐flow lab‐scale photocatalytic membrane reactor (PMR) for degradation of chloramphenicol in water. These results were compared with pristine PSf membrane. RESULTS The degradation of chloramphenicol was measured by liquid chromatography‐mass spectrometry (LC–MS). The photocatalytic degradation experiments revealed that the highest degradation of 61.59% was observed for the PSf/4 wt% TiO2‐HAP nanocomposite membrane. CONCLUSION This study highlights the advantages of applying the photocatalytic TiO2‐HAP incorporated PSf composite membranes for pharmaceutical wastewater treatment applications. © 2020 Society of Chemical Industry</description><identifier>ISSN: 0268-2575</identifier><identifier>EISSN: 1097-4660</identifier><identifier>DOI: 10.1002/jctb.6617</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Antibiotics ; Antifouling substances ; Catalytic activity ; Chloramphenicol ; Chloromycetin ; Degradation ; Evaluation ; Hydroxyapatite ; hydroxyapatite composite ; Liquid chromatography ; Mass spectrometry ; Mass spectroscopy ; Membrane processes ; Membrane reactors ; Membranes ; Nanocomposites ; Oxidation ; Pharmaceutical industry wastes ; Photocatalysis ; photocatalyst ; Photocatalysts ; photocatalytic membrane reactor ; Photodegradation ; Polysulfone ; Polysulfone resins ; Protective coatings ; Surgical implants ; TiO2 ; Titanium ; Titanium dioxide ; Wastewater treatment ; Water treatment</subject><ispartof>Journal of chemical technology and biotechnology (1986), 2021-04, Vol.96 (4), p.1057-1066</ispartof><rights>2020 Society of Chemical Industry</rights><rights>Copyright © 2021 Society of Chemical Industry</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4007-74d1ed28eb4df17172803206c59b446f616deb035e168ecba1be6ef4db0992e43</citedby><cites>FETCH-LOGICAL-c4007-74d1ed28eb4df17172803206c59b446f616deb035e168ecba1be6ef4db0992e43</cites><orcidid>0000-0001-7657-6637 ; 0000-0002-6166-8018</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Singh, Anirudh</creatorcontrib><creatorcontrib>Ramachandran, Sathish Kumar</creatorcontrib><creatorcontrib>Gumpu, Manju Bhargavi</creatorcontrib><creatorcontrib>Zsuzsanna, Laszlo</creatorcontrib><creatorcontrib>Veréb, Gábor</creatorcontrib><creatorcontrib>Kertész, Szabolcs</creatorcontrib><creatorcontrib>Gangasalam, Arthanareeswaran</creatorcontrib><title>Titanium dioxide doped hydroxyapatite incorporated photocatalytic membranes for the degradation of chloramphenicol antibiotic in water</title><title>Journal of chemical technology and biotechnology (1986)</title><description>BACKGROUND In the recent years, photocatalytic membrane process has gained interest in wastewater treatment applications. In this study, the ability of advanced oxidation technology coupled membrane process was evaluated during chloramphenicol (CAP) filtration. Titanium dioxide doped hydroxyapatite (TiO2‐HAP) based photocatalytic membrane for chloramphenicol (CAP) degradation was investigated. The TiO2‐HAP photocatalyst was synthesized by a facile hydrothermal technique and characterized by the transmission electron microscope, X‐ray diffraction, and FTIR spectroscopy. Varying concentrations of TiO2‐HAP photocatalyst incorporated polysulfone (PSf) membranes were fabricated to enhance the photocatalytic activity and antifouling propensity. The photocatalytic activity of TiO2‐HAP incorporated PSf membranes was evaluated by a low‐pressure cross‐flow lab‐scale photocatalytic membrane reactor (PMR) for degradation of chloramphenicol in water. These results were compared with pristine PSf membrane. RESULTS The degradation of chloramphenicol was measured by liquid chromatography‐mass spectrometry (LC–MS). The photocatalytic degradation experiments revealed that the highest degradation of 61.59% was observed for the PSf/4 wt% TiO2‐HAP nanocomposite membrane. CONCLUSION This study highlights the advantages of applying the photocatalytic TiO2‐HAP incorporated PSf composite membranes for pharmaceutical wastewater treatment applications. © 2020 Society of Chemical Industry</description><subject>Antibiotics</subject><subject>Antifouling substances</subject><subject>Catalytic activity</subject><subject>Chloramphenicol</subject><subject>Chloromycetin</subject><subject>Degradation</subject><subject>Evaluation</subject><subject>Hydroxyapatite</subject><subject>hydroxyapatite composite</subject><subject>Liquid chromatography</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Membrane processes</subject><subject>Membrane reactors</subject><subject>Membranes</subject><subject>Nanocomposites</subject><subject>Oxidation</subject><subject>Pharmaceutical industry wastes</subject><subject>Photocatalysis</subject><subject>photocatalyst</subject><subject>Photocatalysts</subject><subject>photocatalytic membrane reactor</subject><subject>Photodegradation</subject><subject>Polysulfone</subject><subject>Polysulfone resins</subject><subject>Protective coatings</subject><subject>Surgical implants</subject><subject>TiO2</subject><subject>Titanium</subject><subject>Titanium dioxide</subject><subject>Wastewater treatment</subject><subject>Water treatment</subject><issn>0268-2575</issn><issn>1097-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kL1OwzAUhS0EEqUw8AaWmBjSXruJk4xQ8atKLGWO_HNDXCVxcFyVvADPTUJZme5wvu9c6RByzWDBAPhyp4NaCMHSEzJjkKdRLASckhlwkUU8SZNzctH3OwAQGRcz8r21QbZ231Bj3Zc1SI3r0NBqMN59DbKTwQakttXOd87LMGZd5YLTMsh6CFbTBhvlZYs9LZ2noRor8MNLM5qupa6kuqpHs-kqbK12NZVtsMq6ybUtPYyd_pKclbLu8ervzsn748N2_Rxt3p5e1nebSMcAaZTGhqHhGarYlCxlKc9gxUHoJFdxLErBhEEFqwSZyFAryRQKLGOjIM85xqs5uTn2dt597rEPxc7tfTu-LHgCLEtXLJ-o2yOlvet7j2XRedtIPxQMimnmYpq5mGYe2eWRPdgah__B4nW9vf81fgCI94NJ</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Singh, Anirudh</creator><creator>Ramachandran, Sathish Kumar</creator><creator>Gumpu, Manju Bhargavi</creator><creator>Zsuzsanna, Laszlo</creator><creator>Veréb, Gábor</creator><creator>Kertész, Szabolcs</creator><creator>Gangasalam, Arthanareeswaran</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0001-7657-6637</orcidid><orcidid>https://orcid.org/0000-0002-6166-8018</orcidid></search><sort><creationdate>202104</creationdate><title>Titanium dioxide doped hydroxyapatite incorporated photocatalytic membranes for the degradation of chloramphenicol antibiotic in water</title><author>Singh, Anirudh ; Ramachandran, Sathish Kumar ; Gumpu, Manju Bhargavi ; Zsuzsanna, Laszlo ; Veréb, Gábor ; Kertész, Szabolcs ; Gangasalam, Arthanareeswaran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4007-74d1ed28eb4df17172803206c59b446f616deb035e168ecba1be6ef4db0992e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Antibiotics</topic><topic>Antifouling substances</topic><topic>Catalytic activity</topic><topic>Chloramphenicol</topic><topic>Chloromycetin</topic><topic>Degradation</topic><topic>Evaluation</topic><topic>Hydroxyapatite</topic><topic>hydroxyapatite composite</topic><topic>Liquid chromatography</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Membrane processes</topic><topic>Membrane reactors</topic><topic>Membranes</topic><topic>Nanocomposites</topic><topic>Oxidation</topic><topic>Pharmaceutical industry wastes</topic><topic>Photocatalysis</topic><topic>photocatalyst</topic><topic>Photocatalysts</topic><topic>photocatalytic membrane reactor</topic><topic>Photodegradation</topic><topic>Polysulfone</topic><topic>Polysulfone resins</topic><topic>Protective coatings</topic><topic>Surgical implants</topic><topic>TiO2</topic><topic>Titanium</topic><topic>Titanium dioxide</topic><topic>Wastewater treatment</topic><topic>Water treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singh, Anirudh</creatorcontrib><creatorcontrib>Ramachandran, Sathish Kumar</creatorcontrib><creatorcontrib>Gumpu, Manju Bhargavi</creatorcontrib><creatorcontrib>Zsuzsanna, Laszlo</creatorcontrib><creatorcontrib>Veréb, Gábor</creatorcontrib><creatorcontrib>Kertész, Szabolcs</creatorcontrib><creatorcontrib>Gangasalam, Arthanareeswaran</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of chemical technology and biotechnology (1986)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singh, Anirudh</au><au>Ramachandran, Sathish Kumar</au><au>Gumpu, Manju Bhargavi</au><au>Zsuzsanna, Laszlo</au><au>Veréb, Gábor</au><au>Kertész, Szabolcs</au><au>Gangasalam, Arthanareeswaran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Titanium dioxide doped hydroxyapatite incorporated photocatalytic membranes for the degradation of chloramphenicol antibiotic in water</atitle><jtitle>Journal of chemical technology and biotechnology (1986)</jtitle><date>2021-04</date><risdate>2021</risdate><volume>96</volume><issue>4</issue><spage>1057</spage><epage>1066</epage><pages>1057-1066</pages><issn>0268-2575</issn><eissn>1097-4660</eissn><abstract>BACKGROUND In the recent years, photocatalytic membrane process has gained interest in wastewater treatment applications. In this study, the ability of advanced oxidation technology coupled membrane process was evaluated during chloramphenicol (CAP) filtration. Titanium dioxide doped hydroxyapatite (TiO2‐HAP) based photocatalytic membrane for chloramphenicol (CAP) degradation was investigated. The TiO2‐HAP photocatalyst was synthesized by a facile hydrothermal technique and characterized by the transmission electron microscope, X‐ray diffraction, and FTIR spectroscopy. Varying concentrations of TiO2‐HAP photocatalyst incorporated polysulfone (PSf) membranes were fabricated to enhance the photocatalytic activity and antifouling propensity. The photocatalytic activity of TiO2‐HAP incorporated PSf membranes was evaluated by a low‐pressure cross‐flow lab‐scale photocatalytic membrane reactor (PMR) for degradation of chloramphenicol in water. These results were compared with pristine PSf membrane. RESULTS The degradation of chloramphenicol was measured by liquid chromatography‐mass spectrometry (LC–MS). The photocatalytic degradation experiments revealed that the highest degradation of 61.59% was observed for the PSf/4 wt% TiO2‐HAP nanocomposite membrane. CONCLUSION This study highlights the advantages of applying the photocatalytic TiO2‐HAP incorporated PSf composite membranes for pharmaceutical wastewater treatment applications. © 2020 Society of Chemical Industry</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/jctb.6617</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7657-6637</orcidid><orcidid>https://orcid.org/0000-0002-6166-8018</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0268-2575
ispartof Journal of chemical technology and biotechnology (1986), 2021-04, Vol.96 (4), p.1057-1066
issn 0268-2575
1097-4660
language eng
recordid cdi_proquest_journals_2501873194
source Wiley
subjects Antibiotics
Antifouling substances
Catalytic activity
Chloramphenicol
Chloromycetin
Degradation
Evaluation
Hydroxyapatite
hydroxyapatite composite
Liquid chromatography
Mass spectrometry
Mass spectroscopy
Membrane processes
Membrane reactors
Membranes
Nanocomposites
Oxidation
Pharmaceutical industry wastes
Photocatalysis
photocatalyst
Photocatalysts
photocatalytic membrane reactor
Photodegradation
Polysulfone
Polysulfone resins
Protective coatings
Surgical implants
TiO2
Titanium
Titanium dioxide
Wastewater treatment
Water treatment
title Titanium dioxide doped hydroxyapatite incorporated photocatalytic membranes for the degradation of chloramphenicol antibiotic in water
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A29%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Titanium%20dioxide%20doped%20hydroxyapatite%20incorporated%20photocatalytic%20membranes%20for%20the%20degradation%20of%20chloramphenicol%20antibiotic%20in%20water&rft.jtitle=Journal%20of%20chemical%20technology%20and%20biotechnology%20(1986)&rft.au=Singh,%20Anirudh&rft.date=2021-04&rft.volume=96&rft.issue=4&rft.spage=1057&rft.epage=1066&rft.pages=1057-1066&rft.issn=0268-2575&rft.eissn=1097-4660&rft_id=info:doi/10.1002/jctb.6617&rft_dat=%3Cproquest_cross%3E2501873194%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4007-74d1ed28eb4df17172803206c59b446f616deb035e168ecba1be6ef4db0992e43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2501873194&rft_id=info:pmid/&rfr_iscdi=true