Loading…
Titanium dioxide doped hydroxyapatite incorporated photocatalytic membranes for the degradation of chloramphenicol antibiotic in water
BACKGROUND In the recent years, photocatalytic membrane process has gained interest in wastewater treatment applications. In this study, the ability of advanced oxidation technology coupled membrane process was evaluated during chloramphenicol (CAP) filtration. Titanium dioxide doped hydroxyapatite...
Saved in:
Published in: | Journal of chemical technology and biotechnology (1986) 2021-04, Vol.96 (4), p.1057-1066 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4007-74d1ed28eb4df17172803206c59b446f616deb035e168ecba1be6ef4db0992e43 |
---|---|
cites | cdi_FETCH-LOGICAL-c4007-74d1ed28eb4df17172803206c59b446f616deb035e168ecba1be6ef4db0992e43 |
container_end_page | 1066 |
container_issue | 4 |
container_start_page | 1057 |
container_title | Journal of chemical technology and biotechnology (1986) |
container_volume | 96 |
creator | Singh, Anirudh Ramachandran, Sathish Kumar Gumpu, Manju Bhargavi Zsuzsanna, Laszlo Veréb, Gábor Kertész, Szabolcs Gangasalam, Arthanareeswaran |
description | BACKGROUND
In the recent years, photocatalytic membrane process has gained interest in wastewater treatment applications. In this study, the ability of advanced oxidation technology coupled membrane process was evaluated during chloramphenicol (CAP) filtration. Titanium dioxide doped hydroxyapatite (TiO2‐HAP) based photocatalytic membrane for chloramphenicol (CAP) degradation was investigated. The TiO2‐HAP photocatalyst was synthesized by a facile hydrothermal technique and characterized by the transmission electron microscope, X‐ray diffraction, and FTIR spectroscopy. Varying concentrations of TiO2‐HAP photocatalyst incorporated polysulfone (PSf) membranes were fabricated to enhance the photocatalytic activity and antifouling propensity. The photocatalytic activity of TiO2‐HAP incorporated PSf membranes was evaluated by a low‐pressure cross‐flow lab‐scale photocatalytic membrane reactor (PMR) for degradation of chloramphenicol in water. These results were compared with pristine PSf membrane.
RESULTS
The degradation of chloramphenicol was measured by liquid chromatography‐mass spectrometry (LC–MS). The photocatalytic degradation experiments revealed that the highest degradation of 61.59% was observed for the PSf/4 wt% TiO2‐HAP nanocomposite membrane.
CONCLUSION
This study highlights the advantages of applying the photocatalytic TiO2‐HAP incorporated PSf composite membranes for pharmaceutical wastewater treatment applications. © 2020 Society of Chemical Industry |
doi_str_mv | 10.1002/jctb.6617 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2501873194</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2501873194</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4007-74d1ed28eb4df17172803206c59b446f616deb035e168ecba1be6ef4db0992e43</originalsourceid><addsrcrecordid>eNp1kL1OwzAUhS0EEqUw8AaWmBjSXruJk4xQ8atKLGWO_HNDXCVxcFyVvADPTUJZme5wvu9c6RByzWDBAPhyp4NaCMHSEzJjkKdRLASckhlwkUU8SZNzctH3OwAQGRcz8r21QbZ231Bj3Zc1SI3r0NBqMN59DbKTwQakttXOd87LMGZd5YLTMsh6CFbTBhvlZYs9LZ2noRor8MNLM5qupa6kuqpHs-kqbK12NZVtsMq6ybUtPYyd_pKclbLu8ervzsn748N2_Rxt3p5e1nebSMcAaZTGhqHhGarYlCxlKc9gxUHoJFdxLErBhEEFqwSZyFAryRQKLGOjIM85xqs5uTn2dt597rEPxc7tfTu-LHgCLEtXLJ-o2yOlvet7j2XRedtIPxQMimnmYpq5mGYe2eWRPdgah__B4nW9vf81fgCI94NJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2501873194</pqid></control><display><type>article</type><title>Titanium dioxide doped hydroxyapatite incorporated photocatalytic membranes for the degradation of chloramphenicol antibiotic in water</title><source>Wiley</source><creator>Singh, Anirudh ; Ramachandran, Sathish Kumar ; Gumpu, Manju Bhargavi ; Zsuzsanna, Laszlo ; Veréb, Gábor ; Kertész, Szabolcs ; Gangasalam, Arthanareeswaran</creator><creatorcontrib>Singh, Anirudh ; Ramachandran, Sathish Kumar ; Gumpu, Manju Bhargavi ; Zsuzsanna, Laszlo ; Veréb, Gábor ; Kertész, Szabolcs ; Gangasalam, Arthanareeswaran</creatorcontrib><description>BACKGROUND
In the recent years, photocatalytic membrane process has gained interest in wastewater treatment applications. In this study, the ability of advanced oxidation technology coupled membrane process was evaluated during chloramphenicol (CAP) filtration. Titanium dioxide doped hydroxyapatite (TiO2‐HAP) based photocatalytic membrane for chloramphenicol (CAP) degradation was investigated. The TiO2‐HAP photocatalyst was synthesized by a facile hydrothermal technique and characterized by the transmission electron microscope, X‐ray diffraction, and FTIR spectroscopy. Varying concentrations of TiO2‐HAP photocatalyst incorporated polysulfone (PSf) membranes were fabricated to enhance the photocatalytic activity and antifouling propensity. The photocatalytic activity of TiO2‐HAP incorporated PSf membranes was evaluated by a low‐pressure cross‐flow lab‐scale photocatalytic membrane reactor (PMR) for degradation of chloramphenicol in water. These results were compared with pristine PSf membrane.
RESULTS
The degradation of chloramphenicol was measured by liquid chromatography‐mass spectrometry (LC–MS). The photocatalytic degradation experiments revealed that the highest degradation of 61.59% was observed for the PSf/4 wt% TiO2‐HAP nanocomposite membrane.
CONCLUSION
This study highlights the advantages of applying the photocatalytic TiO2‐HAP incorporated PSf composite membranes for pharmaceutical wastewater treatment applications. © 2020 Society of Chemical Industry</description><identifier>ISSN: 0268-2575</identifier><identifier>EISSN: 1097-4660</identifier><identifier>DOI: 10.1002/jctb.6617</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Antibiotics ; Antifouling substances ; Catalytic activity ; Chloramphenicol ; Chloromycetin ; Degradation ; Evaluation ; Hydroxyapatite ; hydroxyapatite composite ; Liquid chromatography ; Mass spectrometry ; Mass spectroscopy ; Membrane processes ; Membrane reactors ; Membranes ; Nanocomposites ; Oxidation ; Pharmaceutical industry wastes ; Photocatalysis ; photocatalyst ; Photocatalysts ; photocatalytic membrane reactor ; Photodegradation ; Polysulfone ; Polysulfone resins ; Protective coatings ; Surgical implants ; TiO2 ; Titanium ; Titanium dioxide ; Wastewater treatment ; Water treatment</subject><ispartof>Journal of chemical technology and biotechnology (1986), 2021-04, Vol.96 (4), p.1057-1066</ispartof><rights>2020 Society of Chemical Industry</rights><rights>Copyright © 2021 Society of Chemical Industry</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4007-74d1ed28eb4df17172803206c59b446f616deb035e168ecba1be6ef4db0992e43</citedby><cites>FETCH-LOGICAL-c4007-74d1ed28eb4df17172803206c59b446f616deb035e168ecba1be6ef4db0992e43</cites><orcidid>0000-0001-7657-6637 ; 0000-0002-6166-8018</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Singh, Anirudh</creatorcontrib><creatorcontrib>Ramachandran, Sathish Kumar</creatorcontrib><creatorcontrib>Gumpu, Manju Bhargavi</creatorcontrib><creatorcontrib>Zsuzsanna, Laszlo</creatorcontrib><creatorcontrib>Veréb, Gábor</creatorcontrib><creatorcontrib>Kertész, Szabolcs</creatorcontrib><creatorcontrib>Gangasalam, Arthanareeswaran</creatorcontrib><title>Titanium dioxide doped hydroxyapatite incorporated photocatalytic membranes for the degradation of chloramphenicol antibiotic in water</title><title>Journal of chemical technology and biotechnology (1986)</title><description>BACKGROUND
In the recent years, photocatalytic membrane process has gained interest in wastewater treatment applications. In this study, the ability of advanced oxidation technology coupled membrane process was evaluated during chloramphenicol (CAP) filtration. Titanium dioxide doped hydroxyapatite (TiO2‐HAP) based photocatalytic membrane for chloramphenicol (CAP) degradation was investigated. The TiO2‐HAP photocatalyst was synthesized by a facile hydrothermal technique and characterized by the transmission electron microscope, X‐ray diffraction, and FTIR spectroscopy. Varying concentrations of TiO2‐HAP photocatalyst incorporated polysulfone (PSf) membranes were fabricated to enhance the photocatalytic activity and antifouling propensity. The photocatalytic activity of TiO2‐HAP incorporated PSf membranes was evaluated by a low‐pressure cross‐flow lab‐scale photocatalytic membrane reactor (PMR) for degradation of chloramphenicol in water. These results were compared with pristine PSf membrane.
RESULTS
The degradation of chloramphenicol was measured by liquid chromatography‐mass spectrometry (LC–MS). The photocatalytic degradation experiments revealed that the highest degradation of 61.59% was observed for the PSf/4 wt% TiO2‐HAP nanocomposite membrane.
CONCLUSION
This study highlights the advantages of applying the photocatalytic TiO2‐HAP incorporated PSf composite membranes for pharmaceutical wastewater treatment applications. © 2020 Society of Chemical Industry</description><subject>Antibiotics</subject><subject>Antifouling substances</subject><subject>Catalytic activity</subject><subject>Chloramphenicol</subject><subject>Chloromycetin</subject><subject>Degradation</subject><subject>Evaluation</subject><subject>Hydroxyapatite</subject><subject>hydroxyapatite composite</subject><subject>Liquid chromatography</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Membrane processes</subject><subject>Membrane reactors</subject><subject>Membranes</subject><subject>Nanocomposites</subject><subject>Oxidation</subject><subject>Pharmaceutical industry wastes</subject><subject>Photocatalysis</subject><subject>photocatalyst</subject><subject>Photocatalysts</subject><subject>photocatalytic membrane reactor</subject><subject>Photodegradation</subject><subject>Polysulfone</subject><subject>Polysulfone resins</subject><subject>Protective coatings</subject><subject>Surgical implants</subject><subject>TiO2</subject><subject>Titanium</subject><subject>Titanium dioxide</subject><subject>Wastewater treatment</subject><subject>Water treatment</subject><issn>0268-2575</issn><issn>1097-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kL1OwzAUhS0EEqUw8AaWmBjSXruJk4xQ8atKLGWO_HNDXCVxcFyVvADPTUJZme5wvu9c6RByzWDBAPhyp4NaCMHSEzJjkKdRLASckhlwkUU8SZNzctH3OwAQGRcz8r21QbZ231Bj3Zc1SI3r0NBqMN59DbKTwQakttXOd87LMGZd5YLTMsh6CFbTBhvlZYs9LZ2noRor8MNLM5qupa6kuqpHs-kqbK12NZVtsMq6ybUtPYyd_pKclbLu8ervzsn748N2_Rxt3p5e1nebSMcAaZTGhqHhGarYlCxlKc9gxUHoJFdxLErBhEEFqwSZyFAryRQKLGOjIM85xqs5uTn2dt597rEPxc7tfTu-LHgCLEtXLJ-o2yOlvet7j2XRedtIPxQMimnmYpq5mGYe2eWRPdgah__B4nW9vf81fgCI94NJ</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Singh, Anirudh</creator><creator>Ramachandran, Sathish Kumar</creator><creator>Gumpu, Manju Bhargavi</creator><creator>Zsuzsanna, Laszlo</creator><creator>Veréb, Gábor</creator><creator>Kertész, Szabolcs</creator><creator>Gangasalam, Arthanareeswaran</creator><general>John Wiley & Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0001-7657-6637</orcidid><orcidid>https://orcid.org/0000-0002-6166-8018</orcidid></search><sort><creationdate>202104</creationdate><title>Titanium dioxide doped hydroxyapatite incorporated photocatalytic membranes for the degradation of chloramphenicol antibiotic in water</title><author>Singh, Anirudh ; Ramachandran, Sathish Kumar ; Gumpu, Manju Bhargavi ; Zsuzsanna, Laszlo ; Veréb, Gábor ; Kertész, Szabolcs ; Gangasalam, Arthanareeswaran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4007-74d1ed28eb4df17172803206c59b446f616deb035e168ecba1be6ef4db0992e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Antibiotics</topic><topic>Antifouling substances</topic><topic>Catalytic activity</topic><topic>Chloramphenicol</topic><topic>Chloromycetin</topic><topic>Degradation</topic><topic>Evaluation</topic><topic>Hydroxyapatite</topic><topic>hydroxyapatite composite</topic><topic>Liquid chromatography</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Membrane processes</topic><topic>Membrane reactors</topic><topic>Membranes</topic><topic>Nanocomposites</topic><topic>Oxidation</topic><topic>Pharmaceutical industry wastes</topic><topic>Photocatalysis</topic><topic>photocatalyst</topic><topic>Photocatalysts</topic><topic>photocatalytic membrane reactor</topic><topic>Photodegradation</topic><topic>Polysulfone</topic><topic>Polysulfone resins</topic><topic>Protective coatings</topic><topic>Surgical implants</topic><topic>TiO2</topic><topic>Titanium</topic><topic>Titanium dioxide</topic><topic>Wastewater treatment</topic><topic>Water treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singh, Anirudh</creatorcontrib><creatorcontrib>Ramachandran, Sathish Kumar</creatorcontrib><creatorcontrib>Gumpu, Manju Bhargavi</creatorcontrib><creatorcontrib>Zsuzsanna, Laszlo</creatorcontrib><creatorcontrib>Veréb, Gábor</creatorcontrib><creatorcontrib>Kertész, Szabolcs</creatorcontrib><creatorcontrib>Gangasalam, Arthanareeswaran</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of chemical technology and biotechnology (1986)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singh, Anirudh</au><au>Ramachandran, Sathish Kumar</au><au>Gumpu, Manju Bhargavi</au><au>Zsuzsanna, Laszlo</au><au>Veréb, Gábor</au><au>Kertész, Szabolcs</au><au>Gangasalam, Arthanareeswaran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Titanium dioxide doped hydroxyapatite incorporated photocatalytic membranes for the degradation of chloramphenicol antibiotic in water</atitle><jtitle>Journal of chemical technology and biotechnology (1986)</jtitle><date>2021-04</date><risdate>2021</risdate><volume>96</volume><issue>4</issue><spage>1057</spage><epage>1066</epage><pages>1057-1066</pages><issn>0268-2575</issn><eissn>1097-4660</eissn><abstract>BACKGROUND
In the recent years, photocatalytic membrane process has gained interest in wastewater treatment applications. In this study, the ability of advanced oxidation technology coupled membrane process was evaluated during chloramphenicol (CAP) filtration. Titanium dioxide doped hydroxyapatite (TiO2‐HAP) based photocatalytic membrane for chloramphenicol (CAP) degradation was investigated. The TiO2‐HAP photocatalyst was synthesized by a facile hydrothermal technique and characterized by the transmission electron microscope, X‐ray diffraction, and FTIR spectroscopy. Varying concentrations of TiO2‐HAP photocatalyst incorporated polysulfone (PSf) membranes were fabricated to enhance the photocatalytic activity and antifouling propensity. The photocatalytic activity of TiO2‐HAP incorporated PSf membranes was evaluated by a low‐pressure cross‐flow lab‐scale photocatalytic membrane reactor (PMR) for degradation of chloramphenicol in water. These results were compared with pristine PSf membrane.
RESULTS
The degradation of chloramphenicol was measured by liquid chromatography‐mass spectrometry (LC–MS). The photocatalytic degradation experiments revealed that the highest degradation of 61.59% was observed for the PSf/4 wt% TiO2‐HAP nanocomposite membrane.
CONCLUSION
This study highlights the advantages of applying the photocatalytic TiO2‐HAP incorporated PSf composite membranes for pharmaceutical wastewater treatment applications. © 2020 Society of Chemical Industry</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/jctb.6617</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7657-6637</orcidid><orcidid>https://orcid.org/0000-0002-6166-8018</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-2575 |
ispartof | Journal of chemical technology and biotechnology (1986), 2021-04, Vol.96 (4), p.1057-1066 |
issn | 0268-2575 1097-4660 |
language | eng |
recordid | cdi_proquest_journals_2501873194 |
source | Wiley |
subjects | Antibiotics Antifouling substances Catalytic activity Chloramphenicol Chloromycetin Degradation Evaluation Hydroxyapatite hydroxyapatite composite Liquid chromatography Mass spectrometry Mass spectroscopy Membrane processes Membrane reactors Membranes Nanocomposites Oxidation Pharmaceutical industry wastes Photocatalysis photocatalyst Photocatalysts photocatalytic membrane reactor Photodegradation Polysulfone Polysulfone resins Protective coatings Surgical implants TiO2 Titanium Titanium dioxide Wastewater treatment Water treatment |
title | Titanium dioxide doped hydroxyapatite incorporated photocatalytic membranes for the degradation of chloramphenicol antibiotic in water |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A29%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Titanium%20dioxide%20doped%20hydroxyapatite%20incorporated%20photocatalytic%20membranes%20for%20the%20degradation%20of%20chloramphenicol%20antibiotic%20in%20water&rft.jtitle=Journal%20of%20chemical%20technology%20and%20biotechnology%20(1986)&rft.au=Singh,%20Anirudh&rft.date=2021-04&rft.volume=96&rft.issue=4&rft.spage=1057&rft.epage=1066&rft.pages=1057-1066&rft.issn=0268-2575&rft.eissn=1097-4660&rft_id=info:doi/10.1002/jctb.6617&rft_dat=%3Cproquest_cross%3E2501873194%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4007-74d1ed28eb4df17172803206c59b446f616deb035e168ecba1be6ef4db0992e43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2501873194&rft_id=info:pmid/&rfr_iscdi=true |