Loading…

Photo Catalytic, Antimicrobial and Antifungal Activity of Biogenic Iron Oxide Nanoparticles Synthesised Using Aegle marmelos Extracts

Iron oxide nanoparticles (IONPs) were prepared by biosynthesis method using Aegle marmelos extract followed by calcination at 400 °C. Synthesised IONPs were characterized by UV–Vis spectroscopy, X-Ray diffraction technique, Fourier transform infrared spectroscopy, Scanning electron microscopy and En...

Full description

Saved in:
Bibliographic Details
Published in:Journal of inorganic and organometallic polymers and materials 2021-04, Vol.31 (4), p.1738-1744
Main Authors: Sriramulu, Mohana, Balaji, Sumathi, Shanmugam
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Iron oxide nanoparticles (IONPs) were prepared by biosynthesis method using Aegle marmelos extract followed by calcination at 400 °C. Synthesised IONPs were characterized by UV–Vis spectroscopy, X-Ray diffraction technique, Fourier transform infrared spectroscopy, Scanning electron microscopy and Energy dispersive spectroscopy, Zeta potential and Dynamic light scattering analysis. Furthermore, Antifungal activity of the synthesised IONPs was tested against soil isolated plant pathogenic fungi F.solani (12 ± 0.53 mm) compared with fluconazole (7 ± 0.38) at 30 µg/ml. The antimicrobial activity of the IONPs was tested against E.coli (21 ± 0.43 and 30 ± 0.38 mm) and S.aureus (19 ± 0.54 and 28 ± 0.65 mm) at 15 and 30 µg/ml concentration respectively and compared with Streptomycin (16 ± 0.43 and 22 ± 0.34 at 15 and 30 µg/ml). Photocatalytic activity of the synthesised IONPs was studied using Brilliant green dye under UV light. 95.89% degradation was observed in 90 min. The photocatalytic degradation followed the first order kinetics model and the K value was 0.0458 min −1 .
ISSN:1574-1443
1574-1451
DOI:10.1007/s10904-020-01812-2