Loading…

Travelling Wave Solutions of the General Regularized Long Wave Equation

In this paper, we study the bifurcation and exact travelling wave solutions of the general regularized long wave (GRLW) equation. Based on the bifurcation theory of dynamical system, the various exact solutions are obtained. We consider the cases: p = 2 n + 1 and p = 2 n respectively. It is shown th...

Full description

Saved in:
Bibliographic Details
Published in:Qualitative theory of dynamical systems 2021-04, Vol.20 (1), Article 8
Main Authors: Zheng, Hang, Xia, Yonghui, Bai, Yuzhen, Wu, Luoyi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-4b3df8e87dbeb183e646055b6f50ab7eca0b4f314a95d1872dc95977ada0fda83
cites cdi_FETCH-LOGICAL-c319t-4b3df8e87dbeb183e646055b6f50ab7eca0b4f314a95d1872dc95977ada0fda83
container_end_page
container_issue 1
container_start_page
container_title Qualitative theory of dynamical systems
container_volume 20
creator Zheng, Hang
Xia, Yonghui
Bai, Yuzhen
Wu, Luoyi
description In this paper, we study the bifurcation and exact travelling wave solutions of the general regularized long wave (GRLW) equation. Based on the bifurcation theory of dynamical system, the various exact solutions are obtained. We consider the cases: p = 2 n + 1 and p = 2 n respectively. It is shown that GRLW equation has extra kink and anti-kink wave solutions when p = 2 n + 1 , while it’s not for p = 2 n .
doi_str_mv 10.1007/s12346-020-00442-w
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2502866900</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2502866900</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-4b3df8e87dbeb183e646055b6f50ab7eca0b4f314a95d1872dc95977ada0fda83</originalsourceid><addsrcrecordid>eNp9kEFLwzAUx4MoOKdfwFPAc_QlaZL2KGNOYSDoxGNIm2R21HZLWkU_vZlVvHl67_D7_9_jh9A5hUsKoK4iZTyTBBgQgCxj5P0ATaiUjHBRsMO0CyWIyCQco5MYNwCSKc4maLEK5s01Td2u8XPa8GPXDH3dtRF3HvcvDi9c64Jp8INbD40J9aezeNn94vPdYPb4KTryponu7GdO0dPNfDW7Jcv7xd3sekkqToueZCW3Pne5sqUrac6dTC8JUUovwJTKVQbKzHOamUJYmitmq0IUShlrwFuT8ym6GHu3odsNLvZ60w2hTSc1E8ByKQuARLGRqkIXY3Beb0P9asKHpqD3wvQoTCdh-luYfk8hPoZigtu1C3_V_6S-AOpWbqU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2502866900</pqid></control><display><type>article</type><title>Travelling Wave Solutions of the General Regularized Long Wave Equation</title><source>Springer Nature</source><creator>Zheng, Hang ; Xia, Yonghui ; Bai, Yuzhen ; Wu, Luoyi</creator><creatorcontrib>Zheng, Hang ; Xia, Yonghui ; Bai, Yuzhen ; Wu, Luoyi</creatorcontrib><description>In this paper, we study the bifurcation and exact travelling wave solutions of the general regularized long wave (GRLW) equation. Based on the bifurcation theory of dynamical system, the various exact solutions are obtained. We consider the cases: p = 2 n + 1 and p = 2 n respectively. It is shown that GRLW equation has extra kink and anti-kink wave solutions when p = 2 n + 1 , while it’s not for p = 2 n .</description><identifier>ISSN: 1575-5460</identifier><identifier>EISSN: 1662-3592</identifier><identifier>DOI: 10.1007/s12346-020-00442-w</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Bifurcation theory ; Difference and Functional Equations ; Dynamical Systems and Ergodic Theory ; Exact solutions ; Mathematics ; Mathematics and Statistics ; Traveling waves ; Wave equations</subject><ispartof>Qualitative theory of dynamical systems, 2021-04, Vol.20 (1), Article 8</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-4b3df8e87dbeb183e646055b6f50ab7eca0b4f314a95d1872dc95977ada0fda83</citedby><cites>FETCH-LOGICAL-c319t-4b3df8e87dbeb183e646055b6f50ab7eca0b4f314a95d1872dc95977ada0fda83</cites><orcidid>0000-0001-8918-3509</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zheng, Hang</creatorcontrib><creatorcontrib>Xia, Yonghui</creatorcontrib><creatorcontrib>Bai, Yuzhen</creatorcontrib><creatorcontrib>Wu, Luoyi</creatorcontrib><title>Travelling Wave Solutions of the General Regularized Long Wave Equation</title><title>Qualitative theory of dynamical systems</title><addtitle>Qual. Theory Dyn. Syst</addtitle><description>In this paper, we study the bifurcation and exact travelling wave solutions of the general regularized long wave (GRLW) equation. Based on the bifurcation theory of dynamical system, the various exact solutions are obtained. We consider the cases: p = 2 n + 1 and p = 2 n respectively. It is shown that GRLW equation has extra kink and anti-kink wave solutions when p = 2 n + 1 , while it’s not for p = 2 n .</description><subject>Bifurcation theory</subject><subject>Difference and Functional Equations</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Exact solutions</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Traveling waves</subject><subject>Wave equations</subject><issn>1575-5460</issn><issn>1662-3592</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLwzAUx4MoOKdfwFPAc_QlaZL2KGNOYSDoxGNIm2R21HZLWkU_vZlVvHl67_D7_9_jh9A5hUsKoK4iZTyTBBgQgCxj5P0ATaiUjHBRsMO0CyWIyCQco5MYNwCSKc4maLEK5s01Td2u8XPa8GPXDH3dtRF3HvcvDi9c64Jp8INbD40J9aezeNn94vPdYPb4KTryponu7GdO0dPNfDW7Jcv7xd3sekkqToueZCW3Pne5sqUrac6dTC8JUUovwJTKVQbKzHOamUJYmitmq0IUShlrwFuT8ym6GHu3odsNLvZ60w2hTSc1E8ByKQuARLGRqkIXY3Beb0P9asKHpqD3wvQoTCdh-luYfk8hPoZigtu1C3_V_6S-AOpWbqU</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Zheng, Hang</creator><creator>Xia, Yonghui</creator><creator>Bai, Yuzhen</creator><creator>Wu, Luoyi</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8918-3509</orcidid></search><sort><creationdate>20210401</creationdate><title>Travelling Wave Solutions of the General Regularized Long Wave Equation</title><author>Zheng, Hang ; Xia, Yonghui ; Bai, Yuzhen ; Wu, Luoyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-4b3df8e87dbeb183e646055b6f50ab7eca0b4f314a95d1872dc95977ada0fda83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bifurcation theory</topic><topic>Difference and Functional Equations</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Exact solutions</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Traveling waves</topic><topic>Wave equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Hang</creatorcontrib><creatorcontrib>Xia, Yonghui</creatorcontrib><creatorcontrib>Bai, Yuzhen</creatorcontrib><creatorcontrib>Wu, Luoyi</creatorcontrib><collection>CrossRef</collection><jtitle>Qualitative theory of dynamical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Hang</au><au>Xia, Yonghui</au><au>Bai, Yuzhen</au><au>Wu, Luoyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Travelling Wave Solutions of the General Regularized Long Wave Equation</atitle><jtitle>Qualitative theory of dynamical systems</jtitle><stitle>Qual. Theory Dyn. Syst</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>20</volume><issue>1</issue><artnum>8</artnum><issn>1575-5460</issn><eissn>1662-3592</eissn><abstract>In this paper, we study the bifurcation and exact travelling wave solutions of the general regularized long wave (GRLW) equation. Based on the bifurcation theory of dynamical system, the various exact solutions are obtained. We consider the cases: p = 2 n + 1 and p = 2 n respectively. It is shown that GRLW equation has extra kink and anti-kink wave solutions when p = 2 n + 1 , while it’s not for p = 2 n .</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s12346-020-00442-w</doi><orcidid>https://orcid.org/0000-0001-8918-3509</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1575-5460
ispartof Qualitative theory of dynamical systems, 2021-04, Vol.20 (1), Article 8
issn 1575-5460
1662-3592
language eng
recordid cdi_proquest_journals_2502866900
source Springer Nature
subjects Bifurcation theory
Difference and Functional Equations
Dynamical Systems and Ergodic Theory
Exact solutions
Mathematics
Mathematics and Statistics
Traveling waves
Wave equations
title Travelling Wave Solutions of the General Regularized Long Wave Equation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A58%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Travelling%20Wave%20Solutions%20of%20the%20General%20Regularized%20Long%20Wave%20Equation&rft.jtitle=Qualitative%20theory%20of%20dynamical%20systems&rft.au=Zheng,%20Hang&rft.date=2021-04-01&rft.volume=20&rft.issue=1&rft.artnum=8&rft.issn=1575-5460&rft.eissn=1662-3592&rft_id=info:doi/10.1007/s12346-020-00442-w&rft_dat=%3Cproquest_cross%3E2502866900%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-4b3df8e87dbeb183e646055b6f50ab7eca0b4f314a95d1872dc95977ada0fda83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2502866900&rft_id=info:pmid/&rfr_iscdi=true