Loading…
Travelling Wave Solutions of the General Regularized Long Wave Equation
In this paper, we study the bifurcation and exact travelling wave solutions of the general regularized long wave (GRLW) equation. Based on the bifurcation theory of dynamical system, the various exact solutions are obtained. We consider the cases: p = 2 n + 1 and p = 2 n respectively. It is shown th...
Saved in:
Published in: | Qualitative theory of dynamical systems 2021-04, Vol.20 (1), Article 8 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-4b3df8e87dbeb183e646055b6f50ab7eca0b4f314a95d1872dc95977ada0fda83 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-4b3df8e87dbeb183e646055b6f50ab7eca0b4f314a95d1872dc95977ada0fda83 |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | Qualitative theory of dynamical systems |
container_volume | 20 |
creator | Zheng, Hang Xia, Yonghui Bai, Yuzhen Wu, Luoyi |
description | In this paper, we study the bifurcation and exact travelling wave solutions of the general regularized long wave (GRLW) equation. Based on the bifurcation theory of dynamical system, the various exact solutions are obtained. We consider the cases:
p
=
2
n
+
1
and
p
=
2
n
respectively. It is shown that GRLW equation has extra kink and anti-kink wave solutions when
p
=
2
n
+
1
, while it’s not for
p
=
2
n
. |
doi_str_mv | 10.1007/s12346-020-00442-w |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2502866900</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2502866900</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-4b3df8e87dbeb183e646055b6f50ab7eca0b4f314a95d1872dc95977ada0fda83</originalsourceid><addsrcrecordid>eNp9kEFLwzAUx4MoOKdfwFPAc_QlaZL2KGNOYSDoxGNIm2R21HZLWkU_vZlVvHl67_D7_9_jh9A5hUsKoK4iZTyTBBgQgCxj5P0ATaiUjHBRsMO0CyWIyCQco5MYNwCSKc4maLEK5s01Td2u8XPa8GPXDH3dtRF3HvcvDi9c64Jp8INbD40J9aezeNn94vPdYPb4KTryponu7GdO0dPNfDW7Jcv7xd3sekkqToueZCW3Pne5sqUrac6dTC8JUUovwJTKVQbKzHOamUJYmitmq0IUShlrwFuT8ym6GHu3odsNLvZ60w2hTSc1E8ByKQuARLGRqkIXY3Beb0P9asKHpqD3wvQoTCdh-luYfk8hPoZigtu1C3_V_6S-AOpWbqU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2502866900</pqid></control><display><type>article</type><title>Travelling Wave Solutions of the General Regularized Long Wave Equation</title><source>Springer Nature</source><creator>Zheng, Hang ; Xia, Yonghui ; Bai, Yuzhen ; Wu, Luoyi</creator><creatorcontrib>Zheng, Hang ; Xia, Yonghui ; Bai, Yuzhen ; Wu, Luoyi</creatorcontrib><description>In this paper, we study the bifurcation and exact travelling wave solutions of the general regularized long wave (GRLW) equation. Based on the bifurcation theory of dynamical system, the various exact solutions are obtained. We consider the cases:
p
=
2
n
+
1
and
p
=
2
n
respectively. It is shown that GRLW equation has extra kink and anti-kink wave solutions when
p
=
2
n
+
1
, while it’s not for
p
=
2
n
.</description><identifier>ISSN: 1575-5460</identifier><identifier>EISSN: 1662-3592</identifier><identifier>DOI: 10.1007/s12346-020-00442-w</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Bifurcation theory ; Difference and Functional Equations ; Dynamical Systems and Ergodic Theory ; Exact solutions ; Mathematics ; Mathematics and Statistics ; Traveling waves ; Wave equations</subject><ispartof>Qualitative theory of dynamical systems, 2021-04, Vol.20 (1), Article 8</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-4b3df8e87dbeb183e646055b6f50ab7eca0b4f314a95d1872dc95977ada0fda83</citedby><cites>FETCH-LOGICAL-c319t-4b3df8e87dbeb183e646055b6f50ab7eca0b4f314a95d1872dc95977ada0fda83</cites><orcidid>0000-0001-8918-3509</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zheng, Hang</creatorcontrib><creatorcontrib>Xia, Yonghui</creatorcontrib><creatorcontrib>Bai, Yuzhen</creatorcontrib><creatorcontrib>Wu, Luoyi</creatorcontrib><title>Travelling Wave Solutions of the General Regularized Long Wave Equation</title><title>Qualitative theory of dynamical systems</title><addtitle>Qual. Theory Dyn. Syst</addtitle><description>In this paper, we study the bifurcation and exact travelling wave solutions of the general regularized long wave (GRLW) equation. Based on the bifurcation theory of dynamical system, the various exact solutions are obtained. We consider the cases:
p
=
2
n
+
1
and
p
=
2
n
respectively. It is shown that GRLW equation has extra kink and anti-kink wave solutions when
p
=
2
n
+
1
, while it’s not for
p
=
2
n
.</description><subject>Bifurcation theory</subject><subject>Difference and Functional Equations</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Exact solutions</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Traveling waves</subject><subject>Wave equations</subject><issn>1575-5460</issn><issn>1662-3592</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLwzAUx4MoOKdfwFPAc_QlaZL2KGNOYSDoxGNIm2R21HZLWkU_vZlVvHl67_D7_9_jh9A5hUsKoK4iZTyTBBgQgCxj5P0ATaiUjHBRsMO0CyWIyCQco5MYNwCSKc4maLEK5s01Td2u8XPa8GPXDH3dtRF3HvcvDi9c64Jp8INbD40J9aezeNn94vPdYPb4KTryponu7GdO0dPNfDW7Jcv7xd3sekkqToueZCW3Pne5sqUrac6dTC8JUUovwJTKVQbKzHOamUJYmitmq0IUShlrwFuT8ym6GHu3odsNLvZ60w2hTSc1E8ByKQuARLGRqkIXY3Beb0P9asKHpqD3wvQoTCdh-luYfk8hPoZigtu1C3_V_6S-AOpWbqU</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Zheng, Hang</creator><creator>Xia, Yonghui</creator><creator>Bai, Yuzhen</creator><creator>Wu, Luoyi</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8918-3509</orcidid></search><sort><creationdate>20210401</creationdate><title>Travelling Wave Solutions of the General Regularized Long Wave Equation</title><author>Zheng, Hang ; Xia, Yonghui ; Bai, Yuzhen ; Wu, Luoyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-4b3df8e87dbeb183e646055b6f50ab7eca0b4f314a95d1872dc95977ada0fda83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bifurcation theory</topic><topic>Difference and Functional Equations</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Exact solutions</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Traveling waves</topic><topic>Wave equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Hang</creatorcontrib><creatorcontrib>Xia, Yonghui</creatorcontrib><creatorcontrib>Bai, Yuzhen</creatorcontrib><creatorcontrib>Wu, Luoyi</creatorcontrib><collection>CrossRef</collection><jtitle>Qualitative theory of dynamical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Hang</au><au>Xia, Yonghui</au><au>Bai, Yuzhen</au><au>Wu, Luoyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Travelling Wave Solutions of the General Regularized Long Wave Equation</atitle><jtitle>Qualitative theory of dynamical systems</jtitle><stitle>Qual. Theory Dyn. Syst</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>20</volume><issue>1</issue><artnum>8</artnum><issn>1575-5460</issn><eissn>1662-3592</eissn><abstract>In this paper, we study the bifurcation and exact travelling wave solutions of the general regularized long wave (GRLW) equation. Based on the bifurcation theory of dynamical system, the various exact solutions are obtained. We consider the cases:
p
=
2
n
+
1
and
p
=
2
n
respectively. It is shown that GRLW equation has extra kink and anti-kink wave solutions when
p
=
2
n
+
1
, while it’s not for
p
=
2
n
.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s12346-020-00442-w</doi><orcidid>https://orcid.org/0000-0001-8918-3509</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1575-5460 |
ispartof | Qualitative theory of dynamical systems, 2021-04, Vol.20 (1), Article 8 |
issn | 1575-5460 1662-3592 |
language | eng |
recordid | cdi_proquest_journals_2502866900 |
source | Springer Nature |
subjects | Bifurcation theory Difference and Functional Equations Dynamical Systems and Ergodic Theory Exact solutions Mathematics Mathematics and Statistics Traveling waves Wave equations |
title | Travelling Wave Solutions of the General Regularized Long Wave Equation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A58%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Travelling%20Wave%20Solutions%20of%20the%20General%20Regularized%20Long%20Wave%20Equation&rft.jtitle=Qualitative%20theory%20of%20dynamical%20systems&rft.au=Zheng,%20Hang&rft.date=2021-04-01&rft.volume=20&rft.issue=1&rft.artnum=8&rft.issn=1575-5460&rft.eissn=1662-3592&rft_id=info:doi/10.1007/s12346-020-00442-w&rft_dat=%3Cproquest_cross%3E2502866900%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-4b3df8e87dbeb183e646055b6f50ab7eca0b4f314a95d1872dc95977ada0fda83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2502866900&rft_id=info:pmid/&rfr_iscdi=true |