Loading…

Incremental visual tracking via sparse discriminative classifier

Currently, visual object tracking is a core research area as it can be applied in many applications of computer vision. However, tracking of a visual object is a difficult task as it can go through different varying conditions like occlusion of the target object, appearance variation, illumination v...

Full description

Saved in:
Bibliographic Details
Published in:Multimedia systems 2021-04, Vol.27 (2), p.287-299
Main Authors: Devi, Rajkumari Bidyalakshmi, Chanu, Yambem Jina, Singh, Khumanthem Manglem
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-d194fd0343888dc83a5b316f66d331601fcfd16a7d9e4705766252ff0670505d3
cites cdi_FETCH-LOGICAL-c319t-d194fd0343888dc83a5b316f66d331601fcfd16a7d9e4705766252ff0670505d3
container_end_page 299
container_issue 2
container_start_page 287
container_title Multimedia systems
container_volume 27
creator Devi, Rajkumari Bidyalakshmi
Chanu, Yambem Jina
Singh, Khumanthem Manglem
description Currently, visual object tracking is a core research area as it can be applied in many applications of computer vision. However, tracking of a visual object is a difficult task as it can go through different varying conditions like occlusion of the target object, appearance variation, illumination variation, etc. during the tracking process. An efficient and robust visual object tracking based on sparse discriminative classier (SDC) and principal component analysis (PCA) subspace representation is presented in this work. The PCA subspace representation modelled the appearance model of the target object and SDC separates the target object and background object very efficiently. The computational complexity is much better than the other existing methods in the literature. Both quantitative and qualitative analyses of different video sequences are done to compare the proposed tracking algorithm with the other existing tracking algorithms. The experimental results show that the proposed method outperforms the other existing tracking algorithms.
doi_str_mv 10.1007/s00530-020-00748-4
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2502867420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2502867420</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-d194fd0343888dc83a5b316f66d331601fcfd16a7d9e4705766252ff0670505d3</originalsourceid><addsrcrecordid>eNp9kEtLQzEQhYMoWKt_wNUF19HJ4ya5O6X4KBTc6DrEPEpqe1sztwX_vdEruHMxHAbOOTN8hFwyuGYA-gYBWgEUeB3Q0lB5RCZMCk6ZMfyYTKCTnMpO8VNyhrgCYFoJmJDbee9L3MR-cOvmkHFfZSjOv-d-WXfX4M4VjE3I6Eve5N4N-RAbv3aIOeVYzslJcmuMF786Ja8P9y-zJ7p4fpzP7hbUC9YNNLBOpgBCCmNM8Ea49k0wlZQKoiqw5FNgyunQRamh1UrxlqcEqi7QBjElV2Pvrmw_9hEHu9ruS19PWt4CN0pLDtXFR5cvW8QSk93Vr135tAzsNyk7krKVlP0hZWUNiTGE1dwvY_mr_if1BfvuarQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2502867420</pqid></control><display><type>article</type><title>Incremental visual tracking via sparse discriminative classifier</title><source>Springer Nature</source><creator>Devi, Rajkumari Bidyalakshmi ; Chanu, Yambem Jina ; Singh, Khumanthem Manglem</creator><creatorcontrib>Devi, Rajkumari Bidyalakshmi ; Chanu, Yambem Jina ; Singh, Khumanthem Manglem</creatorcontrib><description>Currently, visual object tracking is a core research area as it can be applied in many applications of computer vision. However, tracking of a visual object is a difficult task as it can go through different varying conditions like occlusion of the target object, appearance variation, illumination variation, etc. during the tracking process. An efficient and robust visual object tracking based on sparse discriminative classier (SDC) and principal component analysis (PCA) subspace representation is presented in this work. The PCA subspace representation modelled the appearance model of the target object and SDC separates the target object and background object very efficiently. The computational complexity is much better than the other existing methods in the literature. Both quantitative and qualitative analyses of different video sequences are done to compare the proposed tracking algorithm with the other existing tracking algorithms. The experimental results show that the proposed method outperforms the other existing tracking algorithms.</description><identifier>ISSN: 0942-4962</identifier><identifier>EISSN: 1432-1882</identifier><identifier>DOI: 10.1007/s00530-020-00748-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Computer Communication Networks ; Computer Graphics ; Computer Science ; Computer vision ; Cryptology ; Data Storage Representation ; Occlusion ; Operating Systems ; Optical tracking ; Principal components analysis ; Qualitative analysis ; Regular Paper ; Representations ; Visual discrimination</subject><ispartof>Multimedia systems, 2021-04, Vol.27 (2), p.287-299</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-d194fd0343888dc83a5b316f66d331601fcfd16a7d9e4705766252ff0670505d3</citedby><cites>FETCH-LOGICAL-c319t-d194fd0343888dc83a5b316f66d331601fcfd16a7d9e4705766252ff0670505d3</cites><orcidid>0000-0003-0041-9488</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Devi, Rajkumari Bidyalakshmi</creatorcontrib><creatorcontrib>Chanu, Yambem Jina</creatorcontrib><creatorcontrib>Singh, Khumanthem Manglem</creatorcontrib><title>Incremental visual tracking via sparse discriminative classifier</title><title>Multimedia systems</title><addtitle>Multimedia Systems</addtitle><description>Currently, visual object tracking is a core research area as it can be applied in many applications of computer vision. However, tracking of a visual object is a difficult task as it can go through different varying conditions like occlusion of the target object, appearance variation, illumination variation, etc. during the tracking process. An efficient and robust visual object tracking based on sparse discriminative classier (SDC) and principal component analysis (PCA) subspace representation is presented in this work. The PCA subspace representation modelled the appearance model of the target object and SDC separates the target object and background object very efficiently. The computational complexity is much better than the other existing methods in the literature. Both quantitative and qualitative analyses of different video sequences are done to compare the proposed tracking algorithm with the other existing tracking algorithms. The experimental results show that the proposed method outperforms the other existing tracking algorithms.</description><subject>Algorithms</subject><subject>Computer Communication Networks</subject><subject>Computer Graphics</subject><subject>Computer Science</subject><subject>Computer vision</subject><subject>Cryptology</subject><subject>Data Storage Representation</subject><subject>Occlusion</subject><subject>Operating Systems</subject><subject>Optical tracking</subject><subject>Principal components analysis</subject><subject>Qualitative analysis</subject><subject>Regular Paper</subject><subject>Representations</subject><subject>Visual discrimination</subject><issn>0942-4962</issn><issn>1432-1882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLQzEQhYMoWKt_wNUF19HJ4ya5O6X4KBTc6DrEPEpqe1sztwX_vdEruHMxHAbOOTN8hFwyuGYA-gYBWgEUeB3Q0lB5RCZMCk6ZMfyYTKCTnMpO8VNyhrgCYFoJmJDbee9L3MR-cOvmkHFfZSjOv-d-WXfX4M4VjE3I6Eve5N4N-RAbv3aIOeVYzslJcmuMF786Ja8P9y-zJ7p4fpzP7hbUC9YNNLBOpgBCCmNM8Ea49k0wlZQKoiqw5FNgyunQRamh1UrxlqcEqi7QBjElV2Pvrmw_9hEHu9ruS19PWt4CN0pLDtXFR5cvW8QSk93Vr135tAzsNyk7krKVlP0hZWUNiTGE1dwvY_mr_if1BfvuarQ</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Devi, Rajkumari Bidyalakshmi</creator><creator>Chanu, Yambem Jina</creator><creator>Singh, Khumanthem Manglem</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0041-9488</orcidid></search><sort><creationdate>20210401</creationdate><title>Incremental visual tracking via sparse discriminative classifier</title><author>Devi, Rajkumari Bidyalakshmi ; Chanu, Yambem Jina ; Singh, Khumanthem Manglem</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-d194fd0343888dc83a5b316f66d331601fcfd16a7d9e4705766252ff0670505d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Computer Communication Networks</topic><topic>Computer Graphics</topic><topic>Computer Science</topic><topic>Computer vision</topic><topic>Cryptology</topic><topic>Data Storage Representation</topic><topic>Occlusion</topic><topic>Operating Systems</topic><topic>Optical tracking</topic><topic>Principal components analysis</topic><topic>Qualitative analysis</topic><topic>Regular Paper</topic><topic>Representations</topic><topic>Visual discrimination</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Devi, Rajkumari Bidyalakshmi</creatorcontrib><creatorcontrib>Chanu, Yambem Jina</creatorcontrib><creatorcontrib>Singh, Khumanthem Manglem</creatorcontrib><collection>CrossRef</collection><jtitle>Multimedia systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Devi, Rajkumari Bidyalakshmi</au><au>Chanu, Yambem Jina</au><au>Singh, Khumanthem Manglem</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Incremental visual tracking via sparse discriminative classifier</atitle><jtitle>Multimedia systems</jtitle><stitle>Multimedia Systems</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>27</volume><issue>2</issue><spage>287</spage><epage>299</epage><pages>287-299</pages><issn>0942-4962</issn><eissn>1432-1882</eissn><abstract>Currently, visual object tracking is a core research area as it can be applied in many applications of computer vision. However, tracking of a visual object is a difficult task as it can go through different varying conditions like occlusion of the target object, appearance variation, illumination variation, etc. during the tracking process. An efficient and robust visual object tracking based on sparse discriminative classier (SDC) and principal component analysis (PCA) subspace representation is presented in this work. The PCA subspace representation modelled the appearance model of the target object and SDC separates the target object and background object very efficiently. The computational complexity is much better than the other existing methods in the literature. Both quantitative and qualitative analyses of different video sequences are done to compare the proposed tracking algorithm with the other existing tracking algorithms. The experimental results show that the proposed method outperforms the other existing tracking algorithms.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00530-020-00748-4</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0041-9488</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0942-4962
ispartof Multimedia systems, 2021-04, Vol.27 (2), p.287-299
issn 0942-4962
1432-1882
language eng
recordid cdi_proquest_journals_2502867420
source Springer Nature
subjects Algorithms
Computer Communication Networks
Computer Graphics
Computer Science
Computer vision
Cryptology
Data Storage Representation
Occlusion
Operating Systems
Optical tracking
Principal components analysis
Qualitative analysis
Regular Paper
Representations
Visual discrimination
title Incremental visual tracking via sparse discriminative classifier
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T01%3A39%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Incremental%20visual%20tracking%20via%20sparse%20discriminative%20classifier&rft.jtitle=Multimedia%20systems&rft.au=Devi,%20Rajkumari%20Bidyalakshmi&rft.date=2021-04-01&rft.volume=27&rft.issue=2&rft.spage=287&rft.epage=299&rft.pages=287-299&rft.issn=0942-4962&rft.eissn=1432-1882&rft_id=info:doi/10.1007/s00530-020-00748-4&rft_dat=%3Cproquest_cross%3E2502867420%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-d194fd0343888dc83a5b316f66d331601fcfd16a7d9e4705766252ff0670505d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2502867420&rft_id=info:pmid/&rfr_iscdi=true