Loading…
Incremental visual tracking via sparse discriminative classifier
Currently, visual object tracking is a core research area as it can be applied in many applications of computer vision. However, tracking of a visual object is a difficult task as it can go through different varying conditions like occlusion of the target object, appearance variation, illumination v...
Saved in:
Published in: | Multimedia systems 2021-04, Vol.27 (2), p.287-299 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-d194fd0343888dc83a5b316f66d331601fcfd16a7d9e4705766252ff0670505d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-d194fd0343888dc83a5b316f66d331601fcfd16a7d9e4705766252ff0670505d3 |
container_end_page | 299 |
container_issue | 2 |
container_start_page | 287 |
container_title | Multimedia systems |
container_volume | 27 |
creator | Devi, Rajkumari Bidyalakshmi Chanu, Yambem Jina Singh, Khumanthem Manglem |
description | Currently, visual object tracking is a core research area as it can be applied in many applications of computer vision. However, tracking of a visual object is a difficult task as it can go through different varying conditions like occlusion of the target object, appearance variation, illumination variation, etc. during the tracking process. An efficient and robust visual object tracking based on sparse discriminative classier (SDC) and principal component analysis (PCA) subspace representation is presented in this work. The PCA subspace representation modelled the appearance model of the target object and SDC separates the target object and background object very efficiently. The computational complexity is much better than the other existing methods in the literature. Both quantitative and qualitative analyses of different video sequences are done to compare the proposed tracking algorithm with the other existing tracking algorithms. The experimental results show that the proposed method outperforms the other existing tracking algorithms. |
doi_str_mv | 10.1007/s00530-020-00748-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2502867420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2502867420</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-d194fd0343888dc83a5b316f66d331601fcfd16a7d9e4705766252ff0670505d3</originalsourceid><addsrcrecordid>eNp9kEtLQzEQhYMoWKt_wNUF19HJ4ya5O6X4KBTc6DrEPEpqe1sztwX_vdEruHMxHAbOOTN8hFwyuGYA-gYBWgEUeB3Q0lB5RCZMCk6ZMfyYTKCTnMpO8VNyhrgCYFoJmJDbee9L3MR-cOvmkHFfZSjOv-d-WXfX4M4VjE3I6Eve5N4N-RAbv3aIOeVYzslJcmuMF786Ja8P9y-zJ7p4fpzP7hbUC9YNNLBOpgBCCmNM8Ea49k0wlZQKoiqw5FNgyunQRamh1UrxlqcEqi7QBjElV2Pvrmw_9hEHu9ruS19PWt4CN0pLDtXFR5cvW8QSk93Vr135tAzsNyk7krKVlP0hZWUNiTGE1dwvY_mr_if1BfvuarQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2502867420</pqid></control><display><type>article</type><title>Incremental visual tracking via sparse discriminative classifier</title><source>Springer Nature</source><creator>Devi, Rajkumari Bidyalakshmi ; Chanu, Yambem Jina ; Singh, Khumanthem Manglem</creator><creatorcontrib>Devi, Rajkumari Bidyalakshmi ; Chanu, Yambem Jina ; Singh, Khumanthem Manglem</creatorcontrib><description>Currently, visual object tracking is a core research area as it can be applied in many applications of computer vision. However, tracking of a visual object is a difficult task as it can go through different varying conditions like occlusion of the target object, appearance variation, illumination variation, etc. during the tracking process. An efficient and robust visual object tracking based on sparse discriminative classier (SDC) and principal component analysis (PCA) subspace representation is presented in this work. The PCA subspace representation modelled the appearance model of the target object and SDC separates the target object and background object very efficiently. The computational complexity is much better than the other existing methods in the literature. Both quantitative and qualitative analyses of different video sequences are done to compare the proposed tracking algorithm with the other existing tracking algorithms. The experimental results show that the proposed method outperforms the other existing tracking algorithms.</description><identifier>ISSN: 0942-4962</identifier><identifier>EISSN: 1432-1882</identifier><identifier>DOI: 10.1007/s00530-020-00748-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Computer Communication Networks ; Computer Graphics ; Computer Science ; Computer vision ; Cryptology ; Data Storage Representation ; Occlusion ; Operating Systems ; Optical tracking ; Principal components analysis ; Qualitative analysis ; Regular Paper ; Representations ; Visual discrimination</subject><ispartof>Multimedia systems, 2021-04, Vol.27 (2), p.287-299</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-d194fd0343888dc83a5b316f66d331601fcfd16a7d9e4705766252ff0670505d3</citedby><cites>FETCH-LOGICAL-c319t-d194fd0343888dc83a5b316f66d331601fcfd16a7d9e4705766252ff0670505d3</cites><orcidid>0000-0003-0041-9488</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Devi, Rajkumari Bidyalakshmi</creatorcontrib><creatorcontrib>Chanu, Yambem Jina</creatorcontrib><creatorcontrib>Singh, Khumanthem Manglem</creatorcontrib><title>Incremental visual tracking via sparse discriminative classifier</title><title>Multimedia systems</title><addtitle>Multimedia Systems</addtitle><description>Currently, visual object tracking is a core research area as it can be applied in many applications of computer vision. However, tracking of a visual object is a difficult task as it can go through different varying conditions like occlusion of the target object, appearance variation, illumination variation, etc. during the tracking process. An efficient and robust visual object tracking based on sparse discriminative classier (SDC) and principal component analysis (PCA) subspace representation is presented in this work. The PCA subspace representation modelled the appearance model of the target object and SDC separates the target object and background object very efficiently. The computational complexity is much better than the other existing methods in the literature. Both quantitative and qualitative analyses of different video sequences are done to compare the proposed tracking algorithm with the other existing tracking algorithms. The experimental results show that the proposed method outperforms the other existing tracking algorithms.</description><subject>Algorithms</subject><subject>Computer Communication Networks</subject><subject>Computer Graphics</subject><subject>Computer Science</subject><subject>Computer vision</subject><subject>Cryptology</subject><subject>Data Storage Representation</subject><subject>Occlusion</subject><subject>Operating Systems</subject><subject>Optical tracking</subject><subject>Principal components analysis</subject><subject>Qualitative analysis</subject><subject>Regular Paper</subject><subject>Representations</subject><subject>Visual discrimination</subject><issn>0942-4962</issn><issn>1432-1882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLQzEQhYMoWKt_wNUF19HJ4ya5O6X4KBTc6DrEPEpqe1sztwX_vdEruHMxHAbOOTN8hFwyuGYA-gYBWgEUeB3Q0lB5RCZMCk6ZMfyYTKCTnMpO8VNyhrgCYFoJmJDbee9L3MR-cOvmkHFfZSjOv-d-WXfX4M4VjE3I6Eve5N4N-RAbv3aIOeVYzslJcmuMF786Ja8P9y-zJ7p4fpzP7hbUC9YNNLBOpgBCCmNM8Ea49k0wlZQKoiqw5FNgyunQRamh1UrxlqcEqi7QBjElV2Pvrmw_9hEHu9ruS19PWt4CN0pLDtXFR5cvW8QSk93Vr135tAzsNyk7krKVlP0hZWUNiTGE1dwvY_mr_if1BfvuarQ</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Devi, Rajkumari Bidyalakshmi</creator><creator>Chanu, Yambem Jina</creator><creator>Singh, Khumanthem Manglem</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0041-9488</orcidid></search><sort><creationdate>20210401</creationdate><title>Incremental visual tracking via sparse discriminative classifier</title><author>Devi, Rajkumari Bidyalakshmi ; Chanu, Yambem Jina ; Singh, Khumanthem Manglem</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-d194fd0343888dc83a5b316f66d331601fcfd16a7d9e4705766252ff0670505d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Computer Communication Networks</topic><topic>Computer Graphics</topic><topic>Computer Science</topic><topic>Computer vision</topic><topic>Cryptology</topic><topic>Data Storage Representation</topic><topic>Occlusion</topic><topic>Operating Systems</topic><topic>Optical tracking</topic><topic>Principal components analysis</topic><topic>Qualitative analysis</topic><topic>Regular Paper</topic><topic>Representations</topic><topic>Visual discrimination</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Devi, Rajkumari Bidyalakshmi</creatorcontrib><creatorcontrib>Chanu, Yambem Jina</creatorcontrib><creatorcontrib>Singh, Khumanthem Manglem</creatorcontrib><collection>CrossRef</collection><jtitle>Multimedia systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Devi, Rajkumari Bidyalakshmi</au><au>Chanu, Yambem Jina</au><au>Singh, Khumanthem Manglem</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Incremental visual tracking via sparse discriminative classifier</atitle><jtitle>Multimedia systems</jtitle><stitle>Multimedia Systems</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>27</volume><issue>2</issue><spage>287</spage><epage>299</epage><pages>287-299</pages><issn>0942-4962</issn><eissn>1432-1882</eissn><abstract>Currently, visual object tracking is a core research area as it can be applied in many applications of computer vision. However, tracking of a visual object is a difficult task as it can go through different varying conditions like occlusion of the target object, appearance variation, illumination variation, etc. during the tracking process. An efficient and robust visual object tracking based on sparse discriminative classier (SDC) and principal component analysis (PCA) subspace representation is presented in this work. The PCA subspace representation modelled the appearance model of the target object and SDC separates the target object and background object very efficiently. The computational complexity is much better than the other existing methods in the literature. Both quantitative and qualitative analyses of different video sequences are done to compare the proposed tracking algorithm with the other existing tracking algorithms. The experimental results show that the proposed method outperforms the other existing tracking algorithms.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00530-020-00748-4</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0041-9488</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0942-4962 |
ispartof | Multimedia systems, 2021-04, Vol.27 (2), p.287-299 |
issn | 0942-4962 1432-1882 |
language | eng |
recordid | cdi_proquest_journals_2502867420 |
source | Springer Nature |
subjects | Algorithms Computer Communication Networks Computer Graphics Computer Science Computer vision Cryptology Data Storage Representation Occlusion Operating Systems Optical tracking Principal components analysis Qualitative analysis Regular Paper Representations Visual discrimination |
title | Incremental visual tracking via sparse discriminative classifier |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T01%3A39%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Incremental%20visual%20tracking%20via%20sparse%20discriminative%20classifier&rft.jtitle=Multimedia%20systems&rft.au=Devi,%20Rajkumari%20Bidyalakshmi&rft.date=2021-04-01&rft.volume=27&rft.issue=2&rft.spage=287&rft.epage=299&rft.pages=287-299&rft.issn=0942-4962&rft.eissn=1432-1882&rft_id=info:doi/10.1007/s00530-020-00748-4&rft_dat=%3Cproquest_cross%3E2502867420%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-d194fd0343888dc83a5b316f66d331601fcfd16a7d9e4705766252ff0670505d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2502867420&rft_id=info:pmid/&rfr_iscdi=true |